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ABSTRACT
Von Kármán swirling flow is often used as a canonical

case to study stationary turbulence experimentally. Although
many studies focus on the structure and statistics of turbulence
produced at the centre of this flow, several studies focusing
on the large-scale global features of the flow have identified
interesting phenomena such as equatorial symmetry breaking
(de la Torre & Burguete, 2007; Cortet et al., 2010). In this pa-
per, we investigated the potential presence and characteristics
of a large-scale slowly rotating structure with high kinetic en-
ergy content. The structure was recently identified by Baj et al.
(2019) at Re = 3× 104. However, we considered a Reynolds
number higher than the critical phase transition range proposed
by Cortet et al. (2010), i.e. 5× 104 < Rec < 105. Stereo-
scopic particle image velocimetry (PIV) was used to measure
the stationary flow at Re = 1.21×105, but such a structure was
not observed. However, we found that introducing a modula-
tion with harmonic phase shift between the impellers caused
a large-scale oval-shape structure to emerge in the flow. The
structure showed oscillations in the axial and circumferential
directions of the flow at the modulation frequency, with the ax-
ial oscillation being the most significant. The detected struc-
ture contained approximately 40% of the kinetic energy of the
measured flow.

INTRODUCTION
It is widely agreed that large-scale turbulent motions are

flow dependent, whereas their small-scale counterparts pos-
sess certain universal features regardless of the flow type. The
length scales of the large-scale motions are comparable to the
physical size of the flow. Consequently, these motions are
greatly impacted by the specific flow geometry, boundary con-
ditions, and instabilities inherent to the flow (Pope, 2000).
These motions have been of interest in turbulence research as
many natural and engineering applications are related to the
large-scale motions, e.g. mixing, drag force, and heat trans-
fer. Some examples of these studies are in pipe flow (Hell-
ström et al., 2015), boundary layer (Lee, 2017), channel flow
(Lee et al., 2014), Rayleigh-Bénard flow (Mishra et al., 2011),

and Couette flow (Lee & Moser, 2018). The overall conclu-
sion from these studies is that turbulence demonstrates a much
wider range of features at large-scales in odds with certain
well-established models, e.g. turbulent-viscosity hypothesis.
Moreover, large-scale turbulence exhibits nonlocality in time
and space, meaning that the turbulent process has a long mem-
ory and is influenced by events that occur at remote distances
within the flow field (Pope, 2000).

Research on stationary turbulence generated by two
counter-rotating discs, known as von Kármán swirling flow,
has been conducted since the early works of von Kármán
(1921), Batchelor (1951) and Picha & Eckert (1958). The
flow is particularly suitable for experimental studies because
it produces homogeneous turbulence with high velocity fluc-
tuations and a negligible mean flow at the center of the ap-
paratus, where a stagnation point is established. Most stud-
ies on this flow have focused on the dissipation scales near
the flow center (Lawson & Dawson, 2015; Debue et al., 2021;
Aligolzadeh et al., 2022, 2023). However, the literature on
the large-scale features of the flow is relatively limited. de la
Torre & Burguete (2007) observed symmetry breaking behav-
ior of the velocity field in a von Kármán flow at Re' 3×105.
This symmetry breaking manifests itself as a slow dynamic,
random inversion between two states (bi-stability) when the
impellers are counter-rotating. On the other hand, a periodic
inversion pattern is observed when a low frequency harmonic
forcing is applied to one of the impellers. In a related study,
Cortet et al. (2010) proposed that turbulence in von Kármán
swirling flow undergoes a critical phase transition within the
range 5×104 < Re < 105. This hypothesis is based on exper-
imental observations of significant maxima required for sym-
metry breaking within a specific range of impeller forcing. In
a recent study, Baj et al. (2019) discovered a large-scale, low-
frequency velocity structure with high kinetic energy rotating
around the axis at Re' 3×104. The topology of the detected
structure reported to be similar to macro-instabilities observed
in stirred vessels (Doulgerakis et al., 2011).

The present study aimed to build on the findings of Baj
et al. (2019) to examine whether the structure exists be-
yond the critical phase transition Reynolds number reported
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Figure 1: Von Kármán swirling flow: (a) sketch of the
facility along with the key dimensions and the mean flow
pattern and (b) the stereoscopic PIV measurement setup.

by Cortet et al. (2010). Another objective was to determine
whether it was feasible to activate a similar structure by mod-
ulating the impellers.

EXPERIMENTAL PROCEDURE
The measurements were conducted in the large-size von

Kármán swirling flow facility at Norwegian University of Sci-
ence and Technology, Trondheim, Norway. Two identical im-
pellers with a radius of R = 0.8m were located at the top and
bottom of a dodecagonal transparent plexiglass tank, 2m tall
and 2m across, filled with water. The impellers were 1.25m
apart. Sub-figure 1a depicts a schematic of the facility, high-
lighting its key dimensions. Moreover, it illustrates the mean
flow pattern, which is characterized by a primary horizontal
shear layer. This layer, in turn, induces a secondary vertical
circulation pattern due to the centrifugal pumping force.

As a reference case, the two impellers were set to counter-
rotate at a speed of 2rpm ( f0 = 2/60 = 0.033 Hz, Ω0 = 2π f0),
which corresponded to a Reynolds number of Re = R2Ω0/ν '
1.2×105. In other cases, modulations were introduced either
harmonically, as described in equation 1 for the top impeller
and equation 2 for the bottom impeller, or randomly using
Langevin forcing (see Pope (2000)). In the harmonic cases,
modulation amplitude, frequency, and phase shift between the
impellers were represented by Am, fm, and ∆φm, respectively.

Ωt(t) = Ω0

(
1+Am sin(2π fmt +∆φm)

)
(1)
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Figure 2: Normalized decomposition of the rotational ve-
locity into shearing, Ω∗sh in gray, and solid body rotation,
Ω∗sb in black, in the harmonic modulation cases.

Ωb(t) = Ω0

(
−1+Am sin(2π fmt)

)
(2)

A total of 11 cases were measured, including the reference
case, 8 cases of harmonic modulations, and 2 cases of ran-
dom modulations. The base case of harmonic modulation
was set to Am = 0.25, fm/ f0 = 0.1, and ∆φm = π . The rest
of the harmonic modulation cases were produced by varying
only one of the three parameters in the base case. These pa-
rameters took the following values: Am = [0.15, 0.25, 0.35],
fm/ f0 = [0.05, 0.1, 0.15], and ∆φm = [π/4, π/2, 3π/4, π].
However, the present paper discusses only the results for
∆φm = π,3π/4,π/2,π/4 while the other two parameters were
kept fixed at Am = 0.25 and fm/ f0 = 0.1. Equations 1 and
2 can be used to decompose the normalized rotation speed
of the facility into two components: solid body rotation Ω∗sb,
i.e. co-rotation, as shown in equation 3, and shearing Ω∗sh, i.e.
counter-rotation, as shown in equation 4:

Ω
∗
sb(t) =

Ωt(t)+Ωb(t)
2Ω0

= 2Am cos
(

∆φm

2

)
sin
(

2π fmt +
∆φm

2

) (3)

Ω
∗
sh(t) =

Ωt(t)−Ωb(t)
2Ω0

= 1+Am sin
(

∆φm

2

)
cos
(

2π fmt +
∆φm

2

) (4)

When ∆φm = π , the two impellers counter-rotate
(Ω∗sb(t) = 0). As ∆φm decreases, amplitude of the harmonic
co-rotation between the impellers increases (Ω∗sb(t) 6= 0). The
maximum is reached at ∆φm = 0 (Ω∗sb(t) = 2Am sin(2π fmt)).
In the reference case, only pure shearing was present, i.e.
Ω∗sb,re f (t) = 0 and Ω∗sh,re f (t) = 1. Figure 2 demonstrates the
profiles of the normalized rotational speed decomposition in
different cases over a period of modulation. The correlation
coefficient between the solid body and shearing rotations was
maximum at ∆φm = π/2, with a value of ρ = 0.01. It then
decreased to ρ = 0.007 at π/4 and 3π/4, and finally reached
ρ = 0 at ∆φm = π .

Stereoscopic PIV was used to measure the velocity fields
at the center of the facility. The field of view (FoV) was
' 50×50 cm2. The spatial resolution of the measurement was
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∆x = 3.68 mm ' 13.8η where η was the Kolmogorov length-
scale of the flow. The setup for the stereoscopic PIV measure-
ment is shown in sub-figure 1b. The measurements obtained
all three components of velocity in a plane (FoV). To ensure a
reasonable convergence of turbulence statistics, the time span
of the measurements covered at least 1000 rotations of the im-
pellers based on Ω0 (2rpm). The length-scales from the mea-
surements were normalized by the impeller radius, x∗ = x/R,
and the time-scales were normalized by the impeller frequency
in the reference case, t∗ = t f0. Reynolds decomposition was
implemented on the velocity fields from the measurements, Ui,
to calculate the velocity fluctuations ui =Ui−Ui (Pope, 2000).

RESULTS
To investigate the effect of forcing modulation on the flow

field characteristics, the root mean square (rms) of velocity
fluctuations and integral length-scales were calculated in dif-
ferent cases followed by power spectral density (PSD) and
proper orthogonal decomposition (POD) analyses to provide
a more comprehensive picture. Overall, the flow was predom-
inantly affected when ∆φm 6= π , i.e. some degree of solid body
rotation existed. This can be observed by comparing the re-
sults between the cases. The analysis of velocity components
indicated that the modulation effect was most pronounced in
the axial direction, followed by the circumferential direction,
and finally to a limited extent in the radial direction. However,
the effect was missing in the flow field when ∆φm = π , i.e.
pure shearing, even when fm and Am were varied.

Table 1 presents the rms of velocity fluctuations averaged
over FoV in the modulated cases with different ∆φm values,
normalized by the corresponding values in the reference case.
The rms was defined as u′i = (u2

i )
1/2, where ∗ and 〈∗〉 repre-

sent ensemble averaging in time (over realizations) and space
(over the FoV), respectively. The rms of velocity fluctuations
with instantaneous counter-rotation (∆φm = π) was very sim-
ilar to the reference values. However, by introducing a har-
monic phase shift between the impellers, the rms values de-
viated form the reference case. As the phase shift increased,
the rms values in the axial direction exhibited an incremen-
tal trend. The maximum value of 〈u′2〉/〈u′2,re f 〉 was 1.29 at
∆φm = π/4. On the other hand, in the radial direction, the
rms values decreased as the harmonic phase shift increased.
We observe a convex function in the circumferential direc-
tion and the total rms, with the minimum values occurring at
∆φm = π/2. The convex trend is also observable, to a lesser
degree, in the radial and axial directions. Although the authors
are uncertain about the reasons behind this behavior, they spec-
ulate that the convexity is linked to the forcing strategy. The
forcing modulation was the superposition of harmonic shear-
ing and solid body rotation, with the highest correlation at π/2,
as discussed in the experimental procedure section.

To complement the analysis of the velocity fluctuations
and investigate whether the changes in kinetic energy are ac-
companied by changes in the average length-scales of turbu-
lent motions in different directions, the longitudinal integral
length-scales in the axial and radial directions of the flow
were estimated using equation 5 (De Jong et al., 2009). In
this equation, the two point autocorrelation function is calcu-
lated over the available range of FoV from a PIV measure-
ment (0 < r < rmax) followed by fitting an exponential curve
to estimate the missing tail outside the measurement domain
(rmax < r < ∞). The measured velocity field in the radial-axial
(x1− x2) plane was used to calculate L11 and L22 in table 2.

When the impellers counter-rotated (∆φm = π), the inte-

Table 1: The spatially averaged rms of velocity fluctu-
ations in the radial (u′1), axial (u′2), and circumferential
(u′3) directions of the flow, normalized by the reference
case.

(Am,
fm
f0
, ∆φm

π
) 〈u′1〉

〈u′1,re f 〉
〈u′2〉
〈u′2,re f 〉

〈u′3〉
〈u′3,re f 〉

〈u′〉
〈u′re f 〉

(0.25, 0.1, 1) 1.01 1.02 1.00 1.01

(0.25, 0.1, 0.75) 0.98 1.14 1.03 1.03

(0.25, 0.1, 0.5) 0.76 1.13 0.81 0.85

(0.25, 0.1, 0.25) 0.81 1.29 0.97 0.98

gral length-scales in table 2 varied within ±5% compared to
the reference case. However, when solid body rotation was
introduced (0 < ∆φm < π), a significant continuous growth
appeared in the axial direction, accompanied by a decreasing
trend in the radial direction. The maximum growth occurred at
∆φm = π/4 where L22/L22,re f = 2.53. In agreement with this
growth in the axial direction, the aspect ratio of the length-
scales increased significantly from L22/L11 = 0.68 in the ref-
erence case to L22/L11 = 1.98 for ∆φm = π/4. Thus, mod-
ulations with harmonic phase shift between the impellers in-
creased both the kinetic energy and size of the turbulent struc-
ture in the axial direction of the flow. The increase in size
was more significant than the kinetic energy, i.e. L22/L22,re f =
2.53 while 〈u′2〉/〈u′2,re f 〉= 1.29. This implies that a large-scale
motion in the axial direction was activated due to the modula-
tion with some degree of harmonic solid body rotation, where
the intensity of this motion varied with ∆φm.

Lii =
∫

∞

0

〈ui(x)ui(x+ eir)〉
〈u2

i (x)〉
dr

'
∫ rmax

0

〈ui(x)ui(x+ eir)〉
〈u2

i (x)〉
dr+

∫
∞

rmax

ai exp(bir)dr

(5)

Table 2: The longitudinal integral length-scales in the ra-
dial (L11) and axial (L22) directions of the flow, normal-
ized by the reference case.

(Am,
fm
f0
, ∆φm

π
) L11

L11,re f

L22
L22,re f

L22
L11

(0.25, 0.1, 1) 0.95 1.02 0.74

(0.25, 0.1, 0.75) 0.95 1.30 0.94

(0.25, 0.1, 0.5) 0.91 2.09 1.56

(0.25, 0.1, 0.25) 0.87 2.53 1.98

To further investigate this, figure 3 shows the PSDs of the
velocity fluctuations, normalized by the reference case. PSD is
defined as the Fourier transform of the auto-correlation func-
tion of the velocity fluctuations (equation 6). Figure 3 dis-
plays the spatially averaged PSDs of velocity fluctuations in
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the radial u1, axial u2, and circumferential u3 directions of the
flow. The area under the PSD curve in the frequency domain
is equal to the rms of the corresponding velocity fluctuation in
the real (time) domain. The aim here is to investigate the distri-
bution of kinetic energy in the frequency domain with respect
to the reference case. This demonstrates how forcing modula-
tions affected the energy distribution in various directions, and
whether energy distribution peaks emerged at certain frequen-
cies.

Suiui( f ) =
∫

∞

−∞

Ruiui(τ)e
−ı2π f τ dτ (6)

Sub-figure 3a, the reference case, does not exhibit any
peaks in any direction. The same is observed in sub-figure
3b where ∆φm = π . However, sub-figures 3d (∆φm = π/2)
and 3e (∆φm = π/4) illustrate significant peaks in the ax-
ial and circumferential directions at the modulation frequency
f/ f0 = fm/ f0 = 0.1. The peak in the axial direction is more
prominent than the circumferential direction. Furthermore,
sub-figure 3c (∆φm = 3π/4) exhibits a significant peak in the
axial direction at the modulation frequency. However, the peak
in the circumferential direction disappears. Figure 3 also in-
dicates that when the peaks emerged, the energy was shifted
only from low frequencies toward the peak frequency (mod-
ulation frequency) while the higher frequencies remained un-
affected, similar to the stationary forcing condition (reference
case). This redistribution of kinetic energy in the frequency
domain might imply that the signature of large-scale forcing
modulation was nearly absent at the smaller scales of the tur-
bulent cascade. Further analysis is required to investigate this
in more detail.

To evaluate the characteristic flow motions corresponding
to the energy peaks observed in the PSD plots (figure 3), POD
analysis was utilized (equation 7):

ui(x j, t) =
∞

∑
n=1

an(t)Φn
i (x j) (7)

First, we consider the stationary forcing (reference case)
and subsequently, the analogous plots for the harmonic forcing
modulations are presented. This facilitates the comparison be-
tween these cases. Sub-figures 4a and 4b display the first two
POD modes (Φn

i (x j)) in the reference case, while sub-figure
4c illustrates the PSDs of the time coefficients of these modes
(PSD(an(t))). No peak appeared in the PSD plots of the coef-
ficients. Finally, sub-figure 4d demonstrates the energy share
of the modes, i.e. (a2

n(t)/∑
∞
n=1 a2

n(t))× 100(%)), indicating
that the first four modes accounted for 64% of the total fluctu-
ation energy of the flow, while the first two modes accounted
for 47%. Figures 5, 6, 7, and 8 depict plots similar to figure 4,
with ∆φm values of π , 3π/4, π/2, and π/4, respectively. The
values of Am = 0.25 and fm/ f0 = 0.1 were kept unchanged.
In figure 5, when ∆φm = π , the PSDs plot did not exhibit any
peaks (only the first two are presented here). In figure 6, when
∆φm = 3π/4, the PSDs of the first two modes did not show
any peaks. However, in modes 3 and 4, peaks appeared at the
modulation frequency where the two modes contributed to a
total of 12.6+ 6.2 = 18.8% of the kinetic energy of the flow.
These modes are topologically paired and together formed a
single structure. The PSDs of their time coefficients indicate
that this structure oscillated harmonically only in the axial di-
rection at the modulation frequency. However, it was axisym-
metric in the circumferential direction without any oscillation
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Figure 3: Normalized PSDs of velocity fluctuations in the
radial (u1), axial (u2), and circumferential (u3) directions
within the cases (Am = 0.25, fm/ f0 = 0.1, ∆φm): (a) ref-
erence (no modulation), (b) ∆φm = π , (c) ∆φm = 3π/4,
(d) ∆φm = π/2, (e) ∆φm = π/4.

at a specific frequency. In figures 7 and 8, PSD peaks ap-
peared in modes 1, 2, and 4 for ∆φm = π/2 and ∆φm = π/4.
The first two modes accounted for 24.3+ 16.1 = 40.4% and
22.8+13.6 = 36.4% of the kinetic energy of the flow, respec-
tively. The first two modes are paired and together formed
an energetic structure that resembled an oval. In addition, the
PSDs of their time coefficients suggest that the structure os-
cillated harmonically at the modulation frequency in both the
axial and circumferential directions.

CONCLUSION
In this paper, we investigated the presence of large-scale

harmonic motions in a von Kármán swirling flow at Re =
1.21× 105, a Reynolds number higher than the critical range
hypothesised by Cortet et al. (2010), i.e. 5×104 < Rec < 105.
This study was motivated by the observations of Baj et al.
(2019) at Re = 3× 104, below the critical range. We used
stereoscopic PIV to measure the flow in our large-size facil-
ity. No such a structure was detected in the stationary flow.
The possibility of activating a similar large-scale harmonically
oscillating structure was explored by applying harmonic mod-
ulations to the impellers. Various numerical techniques were
employed to assess the flow fields from the measurements,
such as rms of velocity fluctuations (u′i), longitudinal integral
length-scales (Lii), PSD, and POD. The results indicated that
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Figure 4: POD analysis of the reference case; (a) mode 1
and (b) mode 2 , i.e. Φ

n=1
i (x j) and Φ

n=2
i (x j) where u∗1

and u∗2 are shown as the streamlines and u∗3 as the filled
contour. (c) PSDs of the time coefficients of modes 1
and 2. (d) The energy share of the modes.
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Figure 5: POD analysis of the case (Am = 0.25, fm/ f0 =
0.1, ∆φm = π); (a) mode 1 and (b) mode 2 , i.e. Φ

n=1
i (x j)

and Φ
n=2
i (x j) where u∗1 and u∗2 are shown as the stream-

lines and u∗3 as the filled contour. (c) PSDs of the time
coefficients of modes 1 and 2. (d) The energy share of
the modes.
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Figure 6: POD analysis of the case (Am = 0.25, fm/ f0 =
0.1, ∆φm = 3π/4); (a) mode 3 and (b) mode 4 , i.e.
Φ

n=3
i (x j) and Φ

n=4
i (x j) where u∗1 and u∗2 are shown as

the streamlines and u∗3 as the filled contour. (c) PSDs of
the time coefficients of modes 3 and 4. (d) The energy
share of the modes.
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Figure 7: POD analysis of the case (Am = 0.25, fm/ f0 =
0.1, ∆φm = π/2); (a) mode 1 and (b) mode 2 , i.e.
Φ

n=1
i (x j) and Φ

n=2
i (x j) where u∗1 and u∗2 are shown as

the streamlines and u∗3 as the filled contour. (c) PSDs of
the time coefficients of modes 1 and 2. (d) The energy
share of the modes.
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Figure 8: POD analysis of the case (Am = 0.25, fm/ f0 =
0.1, ∆φm = π/4); (a) mode 1 and (b) mode 2 , i.e.
Φ

n=1
i (x j) and Φ

n=2
i (x j) where u∗1 and u∗2 are shown as

the streamlines and u∗3 as the filled contour. (c) PSDs of
the time coefficients of modes 1 and 2. (d) The energy
share of the modes.

when the amplitude of solid body rotation increased (decreas-
ing ∆φm from π to π/4), the rms of velocity fluctuations and
the longitudinal integral length-scale in the axial direction of
the flow, u′2 and L22, showed incremental trends. The growth
rate of L22 was more pronounced than that of u′2. The PSD and
POD analyses revealed the appearance of a large-scale oval-
shape structure in the flow with harmonic oscillations only
when solid body rotation was introduced (∆φm 6= π). When
∆φm = π/4 and π/2, the structure showed the most signifi-
cant energetic harmonic oscillations in the axial direction of
the flow, while the circumferential direction showed weaker
harmonic oscillations. The oscillating structure accounted for
approximately 40% of the kinetic energy of the flow. However,
when ∆φm = 3π/4, the harmonic oscillation emerged only in
the axial direction of the flow, and not in the circumferential
direction. This axially oscillating structure accounted for ap-
proximately 20% of the kinetic energy of the flow. The radial
direction of the flow in the mentioned cases did not exhibit any
significant harmonic oscillations.
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mixing flow. In Proceedings of the 12th International Sym-
posium on Turbulence and Shear Flow Phenomena (TSFP-
12).

Aligolzadeh, Farid, Holzner, Markus & Dawson, James R
2023 Entrainment, detrainment and enstrophy transport by
small-scale vortex structures. Journal of Fluid Mechanics
973, A5.

Baj, Pawel, Dawson, James R., Worth, Nicholas A., Knutsen,
Anna N., Lawson, John M. & Bodenschatz, Eberhard 2019
Very large-scale motions in von kármán flow. In Proceed-
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