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ABSTRACT 
Recently, reinforcement learning has attracted much 

attention in flow control because of its unique advantage for 
obtaining a long-term optimal policy. So far, it has been 
applied only to low-dimensional flows with simple actuations 
of limited degrees of freedom. In this study, we apply 
reinforcement learning to wall turbulence control in order to 
determine the complex spatio-temporal distribution of wall 
blowing and suction for reducing skin friction drag based on 
sensing information at a certain distance from the wall. It is 
demonstrated that reinforcement learning successfully finds 
an effective control policy showing non-linear relationship 
between the sensing information and the control input, and 
achieves better drag reduction performance than that obtained 
by the well-known opposition control. 

 
 

BACKGROUND 
While turbulence has the advantages of significantly 

enhancing heat and mass transfer, it also increases friction 
drag and noise. Therefore, smart control of turbulence is a key 
technology in engineering so as to promote its advantages with 
mitigating its drawbacks. Since turbulence is an extremely 
complex physical phenomenon with strong non-linearity and 
multi-scale nature, however, it is quite challenging to develop 
an effective control law to achieve various objectives 
encountered in engineering flows (Brunton et al, 2015).  

With the rapid development of neural networks in recent 
years, reinforcement learning, which maximizes the long-term 
reward sum based on  rewards obtained from short-term trials, 
has been attracting attention as a novel and effective approach 
to find new control strategies. Recently, promising results of 
reinforcement learning have been reported in a wide range of 
fields such as robot control (Kober et al, 2013) and Go (Silver 
et al, 2016), and its applications to flow control have also been 
attempted. For example, Rabault et al. (2019) applied 
reinforcement learning to flow control around a cylinder by 
optimizing wall blowing and suction on the surface of a 
cylinder. Fan et al. (2020) also considered a similar 
configuration with rotating small cylinders. Although large 
drag reduction rates have been confirmed in both the studies, 
their flow configurations are still simple two-dimensional 
flows and only control inputs with limited degrees of freedom 
are considered. Therefore, it remains unclear whether 

reinforcement learning is effective for the control of complex 
turbulent flows with high-dimensional control inputs. 

The objective of this study is to establish a framework for 
optimizing a control policy for turbulent flow. Specifically, we 
attempt to optimize the spatio-temporal distribution of wall 
blowing and suction in a fully developed turbulent channel 
flow using reinforcement learning. The number of degrees of 
freedom of the control input corresponds to the total number 
of computational grid points on the wall, and therefore ranges 
from several thousands to several tens of thousands. Also, the 
control input is allowed to be changed in time. By applying 
the current framework, it will be shown that the reinforcement 
learning successfully finds an effective control policy which 
achieves a higher drag reduction rate than that obtained by the 
opposition control (Choi et al, 1994).	
	
NUMERICAL SETUP 

We consider a fully developed turbulent channel flow as 
shown in Figure 1. Wall blowing and suction with zero-net-
mass-flux are given as a control input in order to reduce the 
skin friction drag. Direct numerical simulation (DNS) is 
conducted under a constant flow rate condition with the bulk 
Reynolds number of 𝑅𝑒! =

"#!$
%

= 4646.72, where 𝑈! is the 
bulk mean velocity of the flow, ℎ	is the channel half-width, 
and 𝜈	is the kinematic viscosity of the fluid. The considered 
bulk Reynolds number corresponds to the friction Reynolds 
number of 𝑅𝑒& =

'"$
%
= 180 in the uncontrolled flow, where 

𝑢& is the friction velocity. 

 
Figure 1. Flow configuration and coordinate system  

in the present study. 
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In order to reduce the computational cost for the training 
the neural networks employed in the present reinforcement 
learning, we consider the minimal channel (Jimenez and Moin, 
1991), which is the smallest domain size for maintaining 
turbulence. The resultant control policy (control law) is then 
assessed in a larger domain to verify its control performance. 
Hereafter, the latter larger domain is referred to a full channel. 
The domain sizes of the minimum and full channels employed 
in the present study are 1𝐿(, 𝐿), 𝐿*4 = 	(2.67, 2.0, 0.8)  and 
(2.5𝜋, 2.0, 𝜋) , respectively, where 𝐿(, 𝐿)  and 𝐿*  are the 
domain sizes normalized by the channel half height ℎ in the  
𝑥, 𝑦 and z directions.  

The governing equations for an incompressible fluid, i.e., 
the continuity and Navier-Stokes equations are solved by a 
pseudo-spectral method where Fourier transform is applied in 
the x and z directions, while Chebyshev polynomials are used 
in the wall-normal direction y. The number of modes used in 
the minimum and full channels are 1𝑁(, 𝑁), 𝑁*4 =
	(16, 65, 16) and (64, 65, 64), respectively. The 3/2 rule is 
used to remove the aliasing errors, so that non-linear terms are 
evaluated on 1.5 times finer physical mesh.  

For time advancement, a fractional step method is used to 
decouple the pressure term from the Navier-Stokes equation. 
The second-order Adams-Bashforth and Euler implicit 
methods are used for the convection and viscous terms, 
respectively. The time step is set as Δ𝑡+ = 0.06 and 0.03 for 
the minimal and full channels. Here, the superscript of + 
indicates a quantity in the wall unit for the uncontrolled flow. 
These values ensure that the Courant number is less than unity 
even with the presence of the control input, i.e., wall blowing 
and suction considered in the present study.  

 
REINFORCEMENT LEARNING 

In reinforcement learning, the agent (learner) receives a 
state 𝑠 from the environment (control target) and outputs an 
action 𝑎 based on a policy 𝜇(𝑎|𝑠). In the present study, 𝑎 is a 
control input, i.e., wall blowing and suction. Its spatial 
distribution is determined by the state 𝑠 , which is the 
instantaneous streamwise and wall-normal velocity 
fluctuations u' and v' at 𝑦,+ = 15. This sensing plane height is 
determined by following the opposition control (Choi et al, 
1994), whose maximum drag reduction rate of 25% is 

obtained at 𝑦,+ = 15	for	𝑅𝑒& = 180 (Hammond et al, 1998). 
It should be noted that, in the previous studies, it is commonly 
assumed that the relationship between the sensing information 
and the control input is linear, and only the proportional 
constant is optimized so as to maximize the drag reduction rate. 
In the present study, however, the control input can be a 
complex non-linear function of the sensing data, since they are 
connected through neural network as explained below.  

Our aim is to find the effective control policy which 
connects the state 𝑠 and the control input 𝑎. For this purpose, 
we use the Deep Deterministic Policy Gradient (DDPG) 
algorithm (Lillcrap et al, 2015), in which an action 𝑎  is 
obtained from a deterministic policy. DDPG consists of two 
neural networks called actor and critic, where actor is 
responsible for deciding actions and critic is responsible for 
evaluating actor. The schematic of the entire networks is 
shown in Figure 2. 

By applying the action (or control input) 𝑎 , the 
instantaneous state 𝑠 is changed to the next state 𝑠′, and the 
agent receives a reward 𝑟 , which is a short-term 
(instantaneous) friction coefficient 𝐶- obtained from DNS: 

 𝑟 = −𝐶- = − &#....
$
%/#!

%. (1) 

where 𝝉𝒘IIII is the spatial average of the wall shear stress and 𝝆 
is the density of the fluid. We put a negative sign in Eq. (1), 
so that maximizing reward corresponds to minimizing the drag. 
By repeating the above interactions with the environment, the 
agent learns the optimal policy 𝜇∗(𝑎|𝑠) so as to maximize the 
long-term drag reduction effects.  

Critic estimates the long-term drag reduction based on the 
instantaneous reward 𝑟 obtained by applying the control input 
determined by actor. It is achieved by minimizing the 
following squared residual of the Bellman equation: 

 𝐿234546 = {𝑟(𝑠, 𝑎) + 𝛾𝑄7(𝑠8, 𝑎′) − 𝑄7(𝑠, 𝑎)}", (2) 
where 𝑄7(𝑠, 𝑎) is the expected total reward when a certain 
action 𝑎  is taken under a certain state 𝑠 . Meanwhile, actor 
network is trained so as to maximize the expected total reward 
𝑄7(𝑠, 𝑎). During the training, the two networks, i.e., actor and 
critic, are trained alternatively, so that both networks will be 
optimized after a number of trials. 

In this study, the network is trained by repeating DNS with 
one episode of 𝑡+ = 600, where the superscript + denotes a 
dimensionless quantity in wall units of the uncontrolled flow. 

Figure 2. Schematic diagram of the DDPG algorithm employed in the present study  
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Each episode starts with the same initial field, and the control 
input determined by the policy is applied to obtain its short-
term reward. In this study, the agent obtains the state of the 
flow field every 𝛥𝑡9654:;+ = 0.6, and the control input between 
the updates is determined by linear interpolation. At the same 
time, the network is trained every 𝛥𝑡5394;4;<+ = 0.6 based on 
the short-term reward. The network has 1 hidden layer 
consisting of 8 nodes. ReLU is used as the activation function, 
while that of the output layer is tanh. These hyper-parameters 
are found to be optimal in a preliminary survey. The training 
is repeated until the control policy converges. 

 
RESULTS 

Figure 3 shows the time average of 𝐶- in the final period 
of each episode, i.e., 500 ≤ 𝑡+ ≤ 600. It can be seen that 𝐶- 
gradually decreases with increasing the episode number. It 
should also be noted that the present 𝐶- is lower than that of 
the opposition control shown by the red line in Figure 3. This 
indicates that an effective control strategy is found from the 
present reinforcement learning (RL). 

 

 
Figure 3. 𝐶- obtained by the present reinforcement 
learning (RL) as a function of episode number  

 
(a)

 
(b)

 
Figure 4. Control policies obtained by the present 

reinforcement learning (a) and the opposition control (b)  
 

Figure 4 (a) shows the best control policy obtained in 
episode 89. Specifically, the control input 𝜙 at the bottom wall 
is plotted as a function of the state, i.e., u' and v' on the sensing 
plane at 𝑦,+ = 15. It is found that the obtained control policy 
shows rapid change from blowing (blue) to suction (red). It is 
in contrast to the control policy of the opposition control 
shown in Figure (b), where the control input linearly depends 

on only the wall-normal velocity fluctuation at the sensing 
plane. It should be emphasized that the neural network 
employed for actor allows to find such a non-linear 
relationship between the sensing information and the actuation 
as shown Figure 4 (a). More specifically, the best policy 
applies blowing (𝜑 > 0)  when the high-speed fluid 
approaches the wall (𝑣8 < 0, 𝑢8 > 0), while suction (𝜑 < 0) 
for the low-speed fluid moves away from the wall 
(𝑣8 > 0, 𝑢8 < 0). When this policy is applied to a full-size 
channel, about 31% drag reduction is achieved. Considering 
that the drag reduction rate of the opposition control (Choi et 
al, 1994) is about 23% in the present flow configuration, it can 
be concluded that a more effective control policy than the 
opposition control can be obtained by the present 
reinforcement learning.  
 
 
(a)

 
 
 
(b)

 
Figure 5. Instantaneous visualizations of the velocity field and 
the control input applied at the bottom wall at (a) t+ = 0.6 and 
(b) t+ = 20.4 after applying the best control policy obtained in 
the present reinforcement learning. Write contours show iso-
surfaces of the second invariant of the deformation tensor. Red 
to blue colors on the bottom wall indicate wall blowing and 
suction, respectively. 
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The instantaneous flow fields at t+ = 0.6 and  20.4 after the 

onset of the control with the best policy obtained in the present 
reinforcement learning are shown in Figure 5 (a) and (b), 
respectively. Just after applying the control, at t+ = 0.6, it can 
be seen that the control input has an elongated structure in the 
streamwise direction. This corresponds to the near-wall 
coherent structures. Interestingly, with time passes, the control 
input transits to a coherent wave-like input as shown in Figure 
5 (b), which is almost uniform in the spanwise direction and 
its streamwise wavelength is equal to the streamwise domain 
size.  

In order to extract a coherent component from the control 
input, we take the spatial average of the instantaneous control 
input in the spanwise direction. The resultant spanwise-
averaged control input 𝜙+V  is shown as a function of the 
streamwise coordinate and the time in Figure 6. It can be seen 
that the wall blowing and suction switches to the other at a 
high frequency, while its wave nodes slowly move to upstream. 
Since the present control policy shown in Figure 4 (a) rapidly 
switches from strong wall blowing to suction depending on the 
state u’ and v’ at the detection plane, it induces a strong 
perturbation at the detection plane. This in turn affects the 
control input in the next time step. Such a feedback between 
the control input and the flow state at the detection plane 
should yields the wave-like coherent control input shown in 
Figure 6. 

 
 

 
Figure 6. Spanwise-averaged control input as a function of the 
streamwise coordinate x and the time t.  
 
 
It has been reported that drag reduction can be achieved by 
applying a traveling wave-like wall blowing and suction (for 
example, Ming et al., 2006, Lieu et al., 2010). Therefore, it is 
of interest to clarify whether the current drag reduction effects 
are caused by the coherent control input. For this purpose, we 
conducted additional computation where only the coherent 
control input shown in Figure 6, which is uniform in the 
spanwise direction, is applied. It should be noted that, in this 
case, the applied control should be regarded as a 
predetermined control rather than a feedback control, since the 
control input no longer depends on the instantaneous flow 
state. It is found that applying the coherent control input only 
does not lead to drag reduction effects. This indicates that the 
present control obtained by the reinforcement learning is 
essentially a feedback control. 
 
 

CONCLUSIONS 
Reinforcement learning was applied to a turbulent channel 

flow in order to find effective control policies for reducing 
skin friction drag for the first time. The obtained control policy 
based on the instantaneous streamwise and wall-normal 
velocity fluctuations at a sensing plane of 𝑦,+ = 15 achieved 
31% drag reduction rate, which is higher than that obtained by 
the opposition control. The obtained contro policy is 
characterized by a sharp change from wall blowing and 
suction, and finding such a complex and non-linear control 
strategy became possible by a systematic learning framework 
leveraged by neural networks. The present results demonstrate 
the effectiveness of reinforcement learning for developing 
new strategies for turbulence control. 
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