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ABSTRACT
A resolvent-based methodology is employed to obtain

non-causal spatio–temporal estimates of turbulent pipe flow
from low-rank probe measurements of wall shear-stress fluc-
tuations. DNS and LES pipe flow numerical simulations at
friction Reynolds number of 550 are used as databases. We
consider one of the DNS databases as the true spatio–temporal
flow field, from which the low-rank measurements are ex-
tracted. Such database is also employed to verify the accu-
racy of the linear estimators. The estimator needs a model
for the nonlinear (or forcing) terms of the Navier-Stokes equa-
tions system, which are obtained from a DNS database and
from a series of computationally cheaper LES databases with
grids coarser than the DNS. Comparisons between the refer-
ence DNS and the estimates indicate that sufficiently accurate
results can be achieved with cheaper LES containing up to
10% of the number of grid points of the DNS, with estimates
closely matching the reference DNS results up to the buffer-
layer and reasonable agreement up to the beginning of the log
layer.

INTRODUCTION
The estimation of space–time flow fluctuations from

noisy, low-rank measurements is an interesting option for the
understanding of the turbulence physics and for the design
of flow control strategies. For wall-bounded turbulent flows,
wall quantities such as shear stress and/or pressure are usu-
ally employed as inputs for the estimation algorithms, as for
practical applications the measurement of such quantities is
easier to obtain than, e.g. the velocity components at a given
distance from the wall. Model-based methodologies can be
used to build the estimator (Bewley & Protas, 2004; Hœpffner
et al., 2005; Chevalier et al., 2006; Colburn et al., 2011; Illing-
worth et al., 2018), although it is also possible to perform flow
estimations based solely on data (Encinar & Jiménez, 2019;
Sasaki et al., 2019; Guastoni et al., 2021). For both model-
and data-driven methodologies the basic idea is to obtain rela-
tions between the measurements and the estimated flow state,
but the model-based methodologies have the additional advan-
tage of providing insight on the underpinning physics.

Linearized models can be obtained using the resolvent
framework. In this case, the Navier-Stokes system is written
in the state–space form and the nonlinear terms are interpreted
as external forcing terms (McKeon & Sharma, 2010; Hwang
& Cossu, 2010; Beneddine et al., 2016; Taira et al., 2017),
hence providing an input–output formulation. Towne et al.

(2020) introduced a resolvent-based estimator for flow statis-
tics, which was further generalized by Martini et al. (2020) for
time-domain estimates. For the latter case, in order to build the
transfer functions between the low-rank measurements and the
flow state components, it is necessary to evaluate the resolvent
operator and feed the algorithm with the cross-spectral den-
sity (CSD) of nonlinear terms, treated as forcing. If the true
forcing CSD is used, optimal estimates of time-varying flow
quantities are obtained. Such estimates are not causal, as the
full time series of sensor data is required for estimation; exten-
sion to causal estimation, using only past sensor information,
is proposed by (Martini et al., 2022). Amaral et al. (2021) suc-
cessfully applied the methodology by Martini et al. (2020) to
direct numerical simulation (DNS) of turbulent channel flow,
using wall shear-stress and pressure low-rank measurements.
Results show a close agreement between estimates and refer-
ence DNS fluctuations in the near wall region, and good agree-
ment for large scale structures throughout the channel. A key
feature is the use of forcing statistics extracted from the DNS
database, which leads to an optimal estimator but requires ex-
pensive simulation and post-processing to obtain the forcing
CSD.

In the present paper we employ the aforementioned
resolvent-based methodology to estimate the space–time ve-
locity fluctuation components of turbulent pipe flow at friction
Reynolds number Reτ ≈ 550 using wall shear-stress measure-
ments. In addition to DNS, we also explore the capability of
wall-resolved large-eddy simulations (LES) to construct esti-
mators. A first DNS database is used as the reference case
from which we extract low-rank measurements of wall-shear
stresses. A second DNS and the other LES databases provide
the forcing (nonlinear) statistics to build the linear estimators.
Here we investigate the capability of cheaper LES databases
on the reconstruction of the space–time flow field, aiming to
obtain a reliable and low-cost estimator that could be used for
various high-Reynolds-number flows of practical interest.

METHODS
Resolvent-based estimator

We begin writing the linearized Navier-Stokes (LNS)
equations in the discretized state-space form in time domain,
i.e.

MMM
dqqq(t)

dt
= AAAqqq(t)+BBB fff , (1a)

yyy(t) = CCCqqq(t)+nnn(t). (1b)
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In this equation, qqq = [uuuxxx uuurrr uuuθ ppp]T , where uuuxxx, uuurrr and uuuθ in-
dicate streamwise, radial and azimuthal velocity fluctuations,
respectively, and ppp indicates the pressure fluctuation. More-
over, t denotes time, AAA is the linearized Navier-Stokes opera-
tor, BBB is the actuation matrix that restricts the forcing terms to
appear only in the momentum equation, yyy is the system obser-
vation (measurements), CCC is the observation matrix that selects
Ns sensor readings from the state vector (in the present paper,
wall-shear stresses in the axial and azimuthal directions), and
nnn is the measurement noise. MMM is a diagonal matrix whose
entries are set to one and zero for the momentum and conti-
nuity equations, respectively. Dependency on longitudinal and
azimuthal wavenumbers, α and m, respectively, as well as on
wall-normal variable y, were dropped to simplify notations.
For pipe flow, the LNS operator LLL = (−iωMMM−AAA) is written in
cylindrical coordinates (Luhar et al., 2014) and linearization is
around the mean turbulent profile, considered as known.

Equation 1 can be written in the frequency domain as

ŷyy(ω) = [CCC(−iωMMM−AAA)
−1BBB] f̂ff (ω)+ n̂nn(ω), (2)

where ω denotes frequency and hats are used for Fourier-
transformed quantities. Following (Martini et al., 2020), it is
possible to obtain the optimal linear transfer function (T̂TT qqq) be-
tween the system observation (ŷyy) and the estimated flow state
components ( ˆ̃qqq), i.e.

ˆ̃qqq = T̂TT qqqŷyy, (3)

where T̂TT qqq is the transfer function and dependency on frequency
ω was dropped to simplify notations. Martini et al. (2020)
derived a expression for T̂TT qqq that is based on the minimization
of the error between the true ( f̂ff ) and estimated ( ˆ̃fff ) forcing
terms and is given by

T̂TT qqq = RRRBBBPPP f f HHH∗
(HHHPPP f f HHH∗

+PPPnn)
−1

, (4)

where RRR = (−iωMMM−AAA)
−1 is the resolvent operator, HHH =CCCRRRBBB

is the resolvent operator including the observation (CCC) and ac-
tuation (BBB) matrices, PPPnn = ⟨n̂nnn̂nn∗⟩ and PPP f f = ⟨ f̂ff f̂ff

∗

⟩ are CSDs
of sensor noise and forcing, respectively. The asterisk (∗) in-
dicates a Hermitian transpose. More details on the estimator
derivation can be found in Martini et al. (2020).

To build the transfer function (Eq. 4), it is necessary to
specify a priori the forcing CSD (PPP f f ). When true forcing
statistics are known, Eq. 4 provides the optimal linear esti-
mator. Other models for the forcing CSD provide sub-optimal
estimators.

The snapshots are reconstructed according to the proce-
dures described in Amaral et al. (2021) and are briefly ad-
dressed below. First, it is necessary to take the inverse Fourier
transform of the transfer function T̂TT qqq, Eq. 4, in order to re-
turn to time domain and obtain TTT qqq. Hence, the time domain
transfer function TTT qqq must be convolved with the measure-
ments/observations yyy(t) to evaluate the state estimate in time
domain q̃qq. Finally, double inverse Fourier transforms in the az-
imuthal and longitudinal directions are taken in order to return
from wavenumber domain to physical space.

Numerical simulations
To generate the databases, we employed numerical simu-

lations conducted with the Openpipeflow code (Willis, 2017).

Periodic boundary conditions were assumed in the streamwise
and azimuthal directions. For all simulations the pipe length
is Lz = 10R, where R is the pipe radius. Table 1 shows the
parameters for all cases, including the number of streamwise
(Nz) and azimuthal wavenumbers (Nθ ), the number of mesh
points in the radial direction (Nr), the mesh discretization in
the streamwise (∆z+), azimuthal ((R∆θ)

+) and radial (∆y+) di-
rections and the mesh points ratio with respect to the DNS case
(N/NDNS). Plus symbols denote inner (wall and/or viscous)
units. All simulations contain 2981 snapshots and the time
steps based on outer units is ∆t = 0.2 for all simulations. Cases
starting with D denote DNS, whereas letter L indicate LES,
carried out using (Smagorinsky, 1963) subgrid scale model,
with a Smagorinsky constant set as Cs = 0.05. As estimations
lose accuracy for large wavenumbers, only the lowest 16 and
32 streamwise and azimuthal wavenumbers were used to con-
struct the estimators. Welch’s method (Welch, 1967) was em-
ployed to evaluate the forcing and state components statistics,
with blocks containing N f f t = 256 time steps and 75% over-
lap. A Hann window was applied to each block to minimize
spectral leakage.

The simulations were validated with reference DNS re-
sults by El Khoury et al. (2013) (not shown here). Cases D1,
D2 and L1 show good agreement with the reference simula-
tions, regarding mean flow profile, axial, azimuthal and ra-
dial velocity fluctuations. The coarser grid cases (L3, L6 and
L8) progressively deteriorate the agreement, with the L8 case
showing strong mismatch with all quantities.

Wall shear-stress measurements in the axial and azimuthal
directions were extracted from the D1 database, which is taken
as ground truth. The other databases, i.e. D2, L1, L3, L6 and
L8, were employed to construct the estimator transfer func-
tions by extracting the forcing statistics (PPP f f ). It is important
to remark that the estimators employed in this study have no
information from the D1 case. The LES databases, which have
coarser grids, significantly reduce the estimates computational
cost, since the number of grid points to run the simulations are
small, but in turn lead to suboptimal estimators. In this pa-
per we employ PPP f f obtained in simulations that have different
grids than the measurements database (D1) and after the evalu-
ation of the transfer functions results are interpolated to a grid
equivalent to that of the measurement database.

RESULTS
Figures 1, 2 and 3 show sample snapshots of the stream-

wise velocity fluctuations from the D1 database, filtered to re-
tain only the lower axial and azimuthal wavenumbers, and cor-
responding estimates obtained using D2, L1, L3, L6 and L8
forcing statistics. Results are shown at radial distances from
the pipe wall of y+ = (1− r+) ≈ 15 and 100 and 200. Plus su-
perscripts denote inner (viscous) scaling units, r is the radial
coordinate and y is the distance from the pipe wall. In the fig-
ures we use a pseudo-spanwise coordinate z = rθ (λz = rλθ )
for enabling comparisons with structures found in planar wall-
bounded flows.

When considering the buffer layer, at a wall-normal dis-
tance of y+ ≈ 15, the resemblance between DNS results and
the estimates is remarkable, even when the L8 forcing is em-
ployed. This is somehow expected, since (Amaral et al., 2021)
showed that assuming the forcing statistics as spatial white
noise to build the estimator also provides accurate estimates
for distances very close to the wall. Moving further from
the wall, the estimates are not as accurate, especially for the
coarser LES (L8) estimator, although most of the large-scale
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Table 1: DNS and LES numerical simulations parameters.

Case Reτ Nr Nz Nθ ∆z+ (R∆θ)
+

∆y+ N/NDNS

D1 550.3 128 528 528 10.4 6.5 0.07-6.3 1.000

D2 550.3 128 528 528 10.4 6.5 0.07-6.3 1.000

L1 548.5 96 384 384 14.2 8.9 0.4-14.7 0.397

L3 568.6 96 192 192 28.6 18.0 0.4-15.2 0.099

L6 551.8 64 64 64 86.1 54.1 0.7-22.9 0.007

L8 509.6 32 32 32 159.3 100.1 0.7-22.9 0.002

Figure 1: Comparison between streamwise velocity component instantaneous snapshot of filtered DNS (D1) and resolvent-
based estimates using wall measurements of shear stress and considering the D2, L1, L3, L6, and L8) forcing statistics at
y+ ≈ 15. Fluctuations shown in outer units.

Figure 2: Comparison between streamwise velocity component instantaneous snapshot of filtered DNS and resolvent-
based estimates at y+ ≈ 100. See comments in the caption of figure 1.
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Figure 3: Comparison between streamwise velocity component instantaneous snapshot of filtered DNS and resolvent-
based estimates at y+ ≈ 200. See comments in the caption of figure 1.

structures present in the DNS snapshots are still recognizable
in all but the L8 estimator. Regarding the radial and azimuthal
velocity components, not shown here, similar results as those
of the streamwise velocity component were observed.

Figure 4 displays normalized correlations (Corr, left
frame), r.m.s errors (Err, middle frame) and variance (⟨q′q′⟩

+

,
right frame) for the streamwise velocity component. Such met-
rics are defined in Amaral et al. (2021) and, for brevity, we
refer to this paper for further details on the metrics definitions.
Accurate estimates correspond to low normalised error Err,
close to 0, and high correlation Corr, close to 1.

All estimators are accurate up to y+ ≈ 10, showing correla-
tion and r.m.s. errors of approximately 0.95 and 0.35, respec-
tively. Moving farther from the wall, only estimators D2, L1
and L3 remain accurate, especially regarding the correlation
and r.m.s. metrics. It is interesting that estimator L3, which
has a grid with less than 10% of the points used for the DNS-
based estimator, could attain such accuracy. This indicates that
the large scales of interested are well calculated in the LES, as
expected, and their statistics may be used to build an accurate
estimator at a fraction of the computational cost of the DNS-
based estimator considered in Amaral et al. (2021). L6 and L8
estimators, on the other hand, provided results that are com-
parable to cases including eddy-viscosity model on the linear
operator and white-noise forcing statistics modelling, strate-
gies that our group previously employed to obtain estimates
of channel flow after low-tank measurements (Amaral et al.,
2021). Overall, the quantitative metrics in figure 4 confirm the
qualitative results shown in figures 1-3. Similar results, not
shown here, were obtained for the azimuthal and radial veloc-
ity components.

Normalized r.m.s. error as a function of the wavenumbers
for the studied estimators are shown in figure 5 for wall dis-
tances (planes) of y+ ≈ 15 and 100. The large structures, which
are characterised by small α and m, are accurately estimated
for the D2, L1 and L3 cases, with virtually zero r.m.s. error at
both planes. The estimates for smaller structures (large α and
m), on the other hand, display higher r.m.s. error, especially
for the y+ ≈ 100 plane. For the coarser L6 and L8 estimators,
even for the y+ ≈ 15 plane, the accuracy of smaller structure
estimates is quite low.

CONCLUSIONS
In this paper we employed resolvent-based estimators to

obtain the space–time flow field of turbulent pipe flow from
wall-shear stress measurements. We compared the perfor-
mance of the estimator when modelling the forcing terms with
DNS and LES databases. Satisfactory results were obtained
with the forcing statistics from LES, especially up to the buffer
layer. The accuracy level of a LES estimator containing ap-
proximately 10% of the grid points of the DNS database is
very close to what is obtained with the DNS estimator. LES-
informed resolvent-based estimation is thus a viable approach
for accurate estimates of turbulent flow at high Re.
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Hœpffner, Jérôme, Chevalier, Mattias, Bewley, Thomas R. &
Hennington, Dan S. 2005 State estimation in wall-bounded

flow systems. Part 1. Perturbed laminar flows. Journal of
Fluid Mechanics 534, 263–294.

Hwang, Yongyun & Cossu, Carlo 2010 Linear non-normal en-
ergy amplification of harmonic and stochastic forcing in the
turbulent channel flow. Journal of Fluid Mechanics 664,
51–73.

Illingworth, Simon J., Monty, Jason P. & Marusic, Ivan 2018
Estimating large-scale structures in wall turbulence using
linear models. Journal of Fluid Mechanics 842, 146–162.

Luhar, Mitul, Sharma, Ati S. & McKeon, Beverley J. 2014
Opposition control within the resolvent analysis framework.
Journal of Fluid Mechanics 749, 597–626.

5



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan, July 19–22, 2022

Martini, Eduardo, Jordan, Peter, Cavalieri, André V. G.,
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