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ABSTRACT
The appearance of turbulence in oscillatory flow through

a hexagonal sphere pack was investigated by means of direct
numerical simulation. The Reynolds numbers lie between 26.9
and 297 and the Womersley number is 31.62. We charac-
terised the flow state based on instantaneous velocity fields and
the time series of the superficial velocity. The velocity fields
were decomposed into symmetric and antisymmetric compo-
nents with respect to the symmetries of the sphere pack. Based
on the temporal evolution of the kinetic energy of the antisym-
metric components, it is possible to distinguish between lami-
nar, transitional and turbulent flow. Finally, the velocity fields
were decomposed with respect to the average over the real-
isations that can be obtained by applying the symmetries of
the hexagonal sphere pack. For the turbulent flow case, a sig-
nificant scale separation between the average and fluctuating
velocity fields is observed.

INTRODUCTION
Oscillatory porous media flow occurs in wave-induced

transport processes in coral reefs (Lowe et al., 2008) or in
the sediment bed; moreover, it could be of interest to en-
hance solute transport in chemical reactors (Crittenden et al.,
2005). Other applications include for example wave-induced
flow through rubble-mound breakwaters (van Gent, 1993; Hall
et al., 1995). In order to describe these transport processes, it
is essential to know whether the pore scale flow is turbulent,
as turbulence is associated with strong mixing.

Starting with Dybbs & Edwards (1984), the microscale
behaviour of stationary turbulent flow through regular and
random sphere packs has been studied numerically (e.g. Hill
& Koch, 2002; He et al., 2019; Sakai & Manhart, 2020)
and experimentally (e.g. Patil & Liburdy, 2012, 2013). Four
flow regimes are commonly distinguished (Dybbs & Edwards,
1984) depending on the Reynolds number: i) linear flow, ii)
steady nonlinear flow, iii) unsteady nonlinear flow and iv)
chaotic / turbulent flow. The transition to turbulent flow gen-
erally occurs for Reynolds numbers around 120 (Fand et al.,
1987). In regular sphere packs, the emergence of chaotic and
turbulent flow can be related to symmetry breaking bifurca-
tions that occur around a Reynolds number of 100 (Hill &
Koch, 2002) or for 138 < Re < 209 (Sakai & Manhart, 2020).

Experimental studies of turbulent oscillatory porous me-
dia flow have been performed with a focus on the behaviour
of bulk flow quantities (van Gent, 1993; Hall et al., 1995;
Losada et al., 1995; Pamuk & Özdemir, 2014; Bağcı et al.,

2016) or on the processes at the interface between the porous
medium and a free flow (Shigematsu et al., 2018). On the other
hand, numerical simulations of oscillatory flow through two-
dimensional porous media configurations were performed by
Graham & Higdon (2002), Iervolino et al. (2010) and Kardgar
& Jafarian (2021). In our upcoming work (Unglehrt & Man-
hart, 2022), the onset of nonlinear effects was investigated in
laminar oscillatory flow through a hexagonal sphere pack by
numerical simulation.

The flow state in oscillatory flow depends on two dimen-
sionless parameters: the Hagen number Hg representing the
amplitude and the Womersley number Wo representing the fre-
quency of the forcing. The Reynolds number Re is a unique
function of the Hagen and Womersley number. Therefore, ei-
ther of Hagen or Reynolds number can be used to characterise
the flow state. Based on a model equation, Gu & Wang (1991)
estimated which flow regime might be expected for a given
combination of Re and Wo.

In the present contribution, we investigate the onset of
turbulence in oscillatory flow through an idealised porous
medium geometry by means of direct numerical simulation. A
visual inspection of the instantaneous velocity fields suggests
that the simulation database includes both laminar and turbu-
lent simulations. However, it is unclear how to objectively
quantify the flow state. Commonly, turbulence is characterised
by temporal and spatial properties of the velocity fluctuations
about the mean, e.g. the frequency or wavenumber spectra
or the spatial two-point correlations. In the present case, the
definition of a fluctuation is not trivial since the flow is un-
steady and inhomogeneous in all spatial directions. One could
perform a phase-dependent time average, but this comes at a
large computational expense since the flow needs to be inte-
grated over many cycles. As our objective is to merely differ-
entiate between laminar and turbulent flow, we consider this
cost to be disproportionate. On the other hand, especially at
higher Womersley numbers analyses of the full velocity have
the problem that the mean flow does not vary slowly compared
to the turbulence and that the boundary and shear layers are not
large compared to the turbulent scales. Therefore, the objec-
tive of the present work is to find quantitative evidence that
allows to discern the laminar and the turbulent flow state.

First, we investigate the behaviour of the streamwise
and cross-streamwise components of the superficial volume-
averaged velocity. Second, we analyse the breaking of the
symmetries that are imposed onto the flow by the sphere pack
geometry. Third, we propose to average the flow over an en-
semble of realisations that is generated using the symmetries
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of the sphere pack geometry. This allows us to separate the
velocity fields into an average and fluctuating part based on
which we can distinguish laminar, transitional and turbulent
cases.

METHODOLOGY

Numerical method
We performed direct numerical simulation of the in-

compressible Navier-Stokes equations with our in-house code
MGLET that is based on Cartesian block-structured grids. The
spatial discretisation in MGLET uses a second-order central fi-
nite volume scheme with a staggered arrangement of variables
and the temporal discretisation employs a third-order explicit
Runge-Kutta method. The no-slip boundary conditions on the
spheres is enforced by a discrete-forcing immersed bound-
ary method that is described in Peller et al. (2006); Peller
(2010). The momentum fluxes near the immersed boundary
are evaluated using a linear least-squares ghost-cell interpola-
tion/extrapolation approach. The conservation of mass is en-
forced in every substep of the time integration scheme using a
flux correction procedure in the interface cells and by solving
a Poisson equation for a correction pressure in the field.

Study design
As a porous medium, we choose a hexagonal close-

packed arrangement of spheres of diameter d. It has a poros-
ity of 0.259 which is the lower limit for packings of equal
spheres. The flow is described by the incompressible Navier-
Stokes equations with an an oscillatory volume force fx sinΩt
in the x–direction. Initially, the flow is at rest.

The problem is governed by two independent parameters:
the Hagen number Hg = fxd3/(ρν2) represents the ratio of
the amplitude of the applied volume force to the viscous forces
and the Womersley number Wo =

√
Ωd2/ν represents the ra-

tio of the sphere diameter to the thickness of the oscillatory
Stokes boundary layer. The Reynolds number Re is based
on the sphere diameter d and the amplitude of the superficial
volume-averaged velocity after the decay of the transient. The
superficial velocity is defined as

〈u〉s :=
1
V

∫
Vf

udV

with the fluid volume Vf and the total volume V .
We consider flow at a Womersley number of 31.62 and

four values of the Hagen number. In linear flow, the selected
value of the Womersley number lies at the transition between
the low and the high frequency regime that are governed by
Stokes flow and potential flow, respectively. Consequently, our
simulations belong to the mid frequency (MF) regime. The
simulation parameters are reported in table 1.

Domain size and grid spacing
The simulation domain consists of two unit cells in the

x–direction and one unit cell in the y- and z–direction. It thus
has an extent 2d×

√
3d×2

√
6/3d. For this size, the domain

contains two spheres in every lattice direction. He et al. (2019)
used a domain of the same volume for their direct numerical
simulations of turbulent flow in a face-centred cubic sphere
pack. They state that ”the unit cell domain showed little varia-
tion in statistics compared to a larger domain”.

Table 1: Simulation parameters.

case Hg Wo Re number of cycles

MF3 105.5 31.62 26.9 3†

MF4 106 31.62 74.0 4† / 1.32‡

MF5 106.5 31.62 157 6.3975

MF6 107 31.62 297 1.63

† These simulations are presented in (Unglehrt & Manhart, 2022).
‡ This simulation was recomputed with a more finely resolved
triangle representation of the sphere pack geometry to match the
other simulations.

The flow was computed with grid resolutions of 48, 96,
192 and 384 cells per diameter (cpd), resulting in a total num-
ber of 88 million fluid cells at 384 cpd. The error of the numer-
ical solution was estimated based on the space-time L2-norm
of the velocity and on the oscillation amplitude of the superfi-
cial velocity 〈u〉s which is used to form the Reynolds number.
For all simulations the relative difference between the finest
and the second finest resolution is less than 1.3%.

The resolution requirements come from the wall bound-
ary layers and possibly the turbulence in the bulk. The char-
acteristic thickness of the oscillatory boundary layer can be
estimated as δ =

√
2ν/Ω which we resolve with 17 cells. On

the other hand, He et al. (2019) employed a grid resolution of
250 (cpd) to simulate stationary turbulent flow up to Re = 741.

RESULTS

Instantaneous velocity fields
Figure 1a–d displays a section through the velocity field

perpendicular to the main flow direction for our simulations.
As the Hagen number is increased by powers of

√
10, the ve-

locity field develops pronounced flow structures in the large
pores, resembling those in transient flow described by Sakai &
Manhart (2020). Due to the regular layout of the structures, we
would consider the cases MF3–MF5 as laminar. At the high-
est Reynolds number, the velocity field is asymmetrical and
irregular vortical structures can be made out. Intuitively, we
would consider the case MF6 (figure 1d) as turbulent. In the
following, we discuss quantitative evidence that allows us to
objectively decide on the flow state.

Superficial velocity
In this section, we discuss the behaviour of the superficial

velocity as the flow state changes from laminar to (presum-
ably) turbulent. The time series of the streamwise superficial
velocity (figure 1e–h) remains relatively smooth throughout
the changes in the velocity field. This is in contrast to the sta-
tionary case for which Hill & Koch (2002) and Sakai & Man-
hart (2020) reported (quasi-) periodic or chaotic oscillations
of the streamwise superficial velocity. At the lowest Reynolds
number, 〈u〉s has a time lag with respect to the forcing and the
amplitude is 25% below the steady state amplitude. As the
Reynolds number is increased, the phase lag reduces and the
peak amplitude approaches the steady state value that would be
attained for the same Hagen number. At the highest Reynolds
number, we observe a plateau rather than a pronounced peak.
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(a) MF3 (Re = 26.9) † (b) MF4 (Re = 74.0) † (c) MF5 (Re = 157) (d) MF6 (Re = 297)

(e) MF3 (Re = 26.9) † (f) MF4 (Re = 74.0) † (g) MF5 (Re = 157) (h) MF6 (Re = 297)

† simulations from (Unglehrt & Manhart, 2022)

Figure 1: (a)–(d) Velocity magnitude in the y-z-plane perpendicular to the flow direction. The velocity fields correspond to
the time of the maximum superficial velocity. (e)–(f) Forcing (dotted red line) and superficial velocity (blue line) over one
period. The superficial velocity is normalised with the steady state value (i.e. for a constant pressure gradient) obtained
from the amplitude of the forcing via the relations given by Sakai & Manhart (2020). The black symbol marks the time
of the snapshot presented in (a)–(d).

The cross-streamwise components of the superficial ve-
locity, 〈v〉s and 〈w〉s, are orthogonal to the imposed volume
force. For the cases MF3 and MF4, these components are very
small as a consequence of the symmetries of the sphere pack
imprinted on the flow. On the other hand, for the cases MF5
and MF6 significant nonzero values of the cross-streamwise
components can be observed. Figure 2 shows a plot of 〈v〉s
and 〈w〉s for the latter simulations. The curves start out at the
origin and spread out into the plane. For the case MF5, the am-
plitude of 〈v〉s is approximately 30 times larger than the am-
plitude of 〈w〉s and approximately 400 times smaller than the
amplitude of 〈u〉s. A clustering of points at the origin indicates
that the cross-streamwise components grow in time. For the
case MF6, the amplitude of 〈v〉s and 〈w〉s is approximately 60
times smaller than the amplitude of 〈u〉s. Both cases shown in
figure 2 exhibit irregular orbits, indicating chaotic behaviour.
Moreover, the cross-streamwise components of the superficial
velocity are only weakly correlated with the streamwise super-
ficial velocity (represented by the colour of the curves).

While for MF6 the observed chaotic behaviour of the
cross-streamwise components is in line with irregular struc-
ture of the velocity field shown in figure 1d, the visual im-
pression of the velocity field of the case MF5 (figure 1c) does
not suggest any chaotic behaviour in this case. This could
be explained with the relatively low magnitude of the cross-
streamwise components.

In conclusion, the streamwise superficial velocity changes
gradually with Reynolds number and we could not identify
features in the time series that could be used to clearly discern
laminar and turbulent flow. Suprisingly, for higher Reynolds
numbers the time and value of the maximum 〈u〉s coincide
with the results of a quasi-steady approximation. On the other
hand, the cross-streamwise components are very small for the
cases MF3 and MF4 whereas they are nonzero and exhibit
chaotic behaviour for MF5 and MF6.

Quantification of symmetry breaking
In this section, we investigate the symmetry breaking of

the flow which was already indicated by the cross-streamwise
components of the superficial velocity.1 Based on the works of
Hill & Koch (2002) and Sakai & Manhart (2020), the symme-
try breaking can be considered a prerequisite of turbulent flow
in the sphere pack.

When a forcing is applied along the x–direction, laminar
flow through the hexagonal sphere pack exhibits four symme-
tries: the flow is invariant with respect to

1. a translation by d in the x–direction (Tx)
2. a translation by d at a 60◦ angle to the x–direction (Txy)
3. a reflection around z =

√
6/3d (Sz)

4. a rotation by π about the axis y =
√

3/3, z =
√

6/6 (Rx)

Figure 3 displays the result of these transformations applied to
the sphere pack inside the simulation domain. Considering the
periodic boundary conditions of the domain, the original and
the transformed configurations of the spheres are congruent.

In order to investigate the possible breaking of these sym-
metries, we decompose the instantaneous velocity fields into a
component usym that is symmetric with respect to one of the
symmetries, and a corresponding antisymmetric component
uanti. The kinetic energy of the antisymmetric component,
〈kanti〉s =

〈 1
2 ρu2

anti
〉

s, measures the violation of the symmetry
under consideration. Figure 4 displays the temporal evolution
of 〈kanti〉s for the various symmetries. For the cases MF3 and
MF4 we observe that all symmetries are satisfied to an accu-
racy of more than 10−7. The amplitude of the antisymmetric
components remains stationary. This indicates that the flow

1Please note the following connection between the symmetries and
the cross-streamwise components of the superficial velocity: If the
flow is symmetric under the rotation Rx, then 〈v〉s = 〈w〉s = 0 and if
the flow is symmetric under the reflection Sz, then 〈w〉s = 0.
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(a) MF5 (Re = 157)

(b) MF6 (Re = 297)

Figure 2: Cross-streamwise components of the superfi-
cial velocity; the curves are coloured by the streamwise
component of the superficial velocity. The irregular or-
bits indicate chaotic flow.

is stable with respect to the symmetry breaking and supports
the hypothesis that the flow is laminar in these cases. For the
case MF5 a simultaneous exponential growth of the energy of
all antisymmetric components can be observed. After approx-
imately 5 cycles, the kinetic energy of the Rx-antisymmetric
part saturates at 0.3% of the maximum total kinetic energy (cf.
figure 4d). This suggests that (i) there exists a linear instabil-
ity mechanism that facilitates the growth of the antisymmetric
part and (ii) a nonlinear self-interaction of the instability oc-
curs which limits its growth. However, this does not neces-
sarily imply that the flow becomes turbulent. Finally, for the
case MF6 a fast growth of the antisymmetric components can
be observed. The kinetic energy of the antisymmetric com-
ponents with respect to Rx, Sz and Txy peaks between 9 and
10% of the cycle maximum of the total kinetic energy.

The initial values of 〈kanti〉s turned out to depend on the
accuracy of the triangle representation of the spheres, from
which the interpolation stencils and coefficients in the im-
mersed boundary method are generated. There exist two
sources of the initial symmetry breaking perturbations in our
code: asymmetric interpolants at the immersed boundary and
the residual of the pressure correction. A visual inspection of
the antisymmetric parts of the velocity field shows that only
the physically meaningful parts of these perturbations are am-
plified.

Symmetry group averaging
In the preceding sections, it was demonstrated that the

antisymmetric components of the velocity field show unsta-

(a) Translation Tx (b) Translation Txy

(c) Reflection Sz (d) Two-fold rotation Rx

Figure 3: Symmetries of laminar flow in a hexagonal
sphere pack due to a volume force along the x–direction.
The black box represents the position of the sphere pack
before the application of the symmetry operation.

ble or chaotic dynamics at Re = 157 and Re = 297. A di-
rect inspection of the spatial distribution of the antisymmetric
components is however not informative as in general, turbu-
lent motion is neither symmetric nor antisymmetric. On the
other hand, the mean velocity field of a turbulent flow is usu-
ally symmetric. Therefore, we decompose the velocity field
into a part that satisfies all of the symmetries

u =
1

16
(I +Rx)(I +Tx)

(
I +Txy

)
(I +Sz)u (1)

where I is the identity, and a residual component u′ = u−u
which is in general neither symmetric nor antisymmetric with
respect to any symmetry.

Alternatively, this decomposition can be interpreted as an
average over the ensemble of 16 velocity fields that is gener-
ated by the action of the symmetry group. Such a symmetry
average was used by Sirovich (1987); Sirovich & Park (1990)
to enlarge the sample size for a proper orthogonal decomposi-
tion. Please note that while equation (1) can be understood as
an ensemble average, it may not converge to the same result as
a time or phase average. For example, Srikanth et al. (2021)
investigated a persistent symmetry breaking phenomenon in a
porous medium for which the time-averaged flow is asymmet-
rical. As there is an equal probability for the flow to deviate to
either side, the ensemble mean flow would be symmetrical.

The symmetry group average (1) underestimates the en-
ergy of the turbulent fluctuations compared to the ensemble
mean. This can be demonstrated as follows. As the flow
problem is symmetric, the ensemble mean E[u] is symmet-
ric and invariant with respect to Rx, Tx, Txy and Sz. For
example, RxE[u] = E[u] and E[Rxu] = E[u]. Hence, the en-
semble mean does not change under the symmetry group aver-
age, i.e. E[u] = E[u] and E[u] = E[u], and the expectation of
the fluctuation about the symmetry group average is zero, i.e.
E[u′] = E[u−u] = 0. Therefore u′ is a part of the fluctuation
about the ensemble mean.
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(a) Translation Tx

(b) Translation Txy

(c) Reflection Sz

(d) Two-fold rotation Rx

Figure 4: Volume-averaged kinetic energy of the an-
tisymmetric components. MF3 (Re = 26.9),
MF4 (Re = 74.0), MF5 (Re = 157), and MF6
(Re = 297). The kinetic energy 〈kanti〉s is normalised
with the maximum total kinetic energy of the last cycle.

Figure 5 displays the spatial distribution of the magnitude
of u and u′. For the case MF5 the symmetry group averaged
velocity field u looks identical to the instantaneous field in fig-
ure 1c. This is due to the low energy of the antisymmetric
components (cf. figure 4). The residual component u′ features
symmetric patterns that are arranged near the high-velocity
features in u. For the case MF6, the symmetry group aver-
aged velocity field contains symmetric versions of the high-
intensity regions near the contact points and inside the large
pores that can be identified in figure 1d. The residual velocity
field u′ does not contain these features; instead many irregular
and small scale vortices can be identified.

CONCLUSION
We performed direct numerical simulation of oscillatory

flow through a hexagonal sphere pack at Wo = 31.62 and four
Reynolds numbers. We investigated instantaneous velocity
fields, the time series of the streamwise and cross-streamwise
superficial velocity and the breaking of the symmetries of the
flow. Moreover, the velocity field was averaged over the en-
semble of realisations generated from the instantaneous ve-
locity fields by applying the symmetries of the sphere pack,
and the spatial distributions of the average and fluctuation field
were discussed. The resulting average field approximates the
ensemble mean of the flow and the resulting fluctuations are a
subset of the fluctuations about the ensemble mean.

At Re = 26.9 and Re = 74.0 the cross-streamwise com-
ponents of the superficial velocity are nearly zero and the flow
shares all symmetries of the sphere pack. Consequently, these
cases can be considered as laminar. On the other hand, the
symmetries of the flow are broken for Re = 157 and Re = 297
and the cross-streamwise superficial velocity show nonzero
values and chaotic behaviour. At Re = 157 the antisymmet-
ric parts of the velocity field with respect to the symmetries
of the sphere pack grow exponentially in time, indicating that
a linear instability is present in the flow. Eventually, the an-
tisymmetric part with respect to the rotation symmetry (cf.
figure 3d) saturates at 0.3% of the total kinetic energy and a
similar behaviour could be expected for the other symmetries.
The fluctuations with respect to the symmetry group average
have an ordered appearance, corroborating that this flow case
is not yet turbulent. Consequently, we categorise it as a tran-
sitional flow. Finally, at Re = 297 the symmetries are broken
rapidly and the antisymmetric parts of the velocity field peak
at approximately 10% of the total kinetic energy. The fluctu-
ations about the symmetry group average consist of disorderd
vortical structures and a scale separation can be observed be-
tween the fluctuating and the average field. Together with the
chaotic behaviour of the cross-streamwise superficial velocity,
this strongly supports the view that this case exhibits turbulent
flow.

Further investigations may be necessary to assess the ef-
fect of the domain size and the dependency of the results on
the Womersley number. Moreover, our findings for the case at
Re = 157 suggest that a Floquet-type linear instability analysis
of the flow could be interesting.
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(a) |u| for MF5 (Re = 157) (b) 30 |u′| for MF5 (Re = 157) (c) |u| for MF6 (Re = 297) (d) |u′| for MF6 (Re = 297)

Figure 5: Magnitude of the symmetry group average velocity u and the corresponding fluctuation u′ in the y-z-plane
perpendicular to the flow direction. The velocity fields correspond to figure 1c–d.
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