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ABSTRACT
The bounding shear layer present near the nozzle exit of

low-speed round jets undergoes Kelvin-Helmholtz instability

that rolls up into vortex rings. These rings experience az-

imuthal instability and the ensuing nonlinear evolution sees the

formation of secondary structures and the ejection of hairpin

vortices into the wake of the ring. The importance of hairpin

vortices in the laminar-turbulent transition process of round jets

has received little attention, and this is a preliminary work in

that direction. Using Direct Numerical Simulations (DNS), we

study the evolution of an isolated hairpin vortex, modelled as a

semi-ellipse with a Gaussian vorticity distribution in its core.

The evolution is also explored in the presence of a uniformly

convecting stream and a uniformly sheared background flow.

The tip of the hairpin vortex moves up due to self-induction,

while its legs approach each other upstream of the tip. This

leads to a viscous vortex reconnection process leading to the

pinch-off of ring-like vortices. Such reconnections of hairpin

vortices, considered here, are qualitatively similar to those ob-

served in other configurations, like antiparallel line vortices.

As the Reynolds number increases, the time to reconnect de-

creases, while it occurs for increasingly smaller times. The

presence of a uniformly convecting background flow has no

effect on the reconnection process, while a uniform shear ei-

ther accelerates or decelerates the process, depending upon the

sense of this shear. This study shows hairpin vortex reconnec-

tion to be an important mechanism in the formation of small

scales in the wake of vortex rings during a round jet transition.

INTRODUCTION
Round jets, common in many industrial applications and

natural processes, are classified into laminar, transitional or

turbulent, based on the nature of nozzle-exit boundary layer.

An initially laminar jet usually transitions into a turbulent jet,

which often involves multiple stages of several instability mech-

anisms. For example, the shear layer of a laminar jet is sub-

jected to the classical Kelvin-Helmholtz instability (Michalke,

1984), which eventually rolls up into vortex rings via nonlinear

mechanisms. Such vortex rings are subjected to two types of

short-wavelength azimuthal instabilities: elliptic (Widnall &

Tsai, 1977) and curvature (Fukumoto & Hattori, 2005), with

the former being more commonly observed for rings during

transition of round jets, which we study here. Elliptic in-

stability leads to the formation of periodic waves around the

circumference of vortex rings, whose period depends upon the

ratio of core to ring radius and also on the details of vorticity

distribution inside the core (Balakrishna et al., 2020). Nonlin-

ear evolution of these waves lead to the formation of complex

secondary structures, referred to in the literature as “halo vortic-

ity”and “inner core”, which eventually break down to initially

form hairpin vortices and later other rings or ring-like struc-

tures, thereby completing the transition to turbulence (Archer

et al., 2008). Here, the number of azimuthal waves around the

ring circumference determines the number of halo and hairpin

vortices.

The formation of ring-like vortices in the late stages of

transition from hairpin vortices were studied in the past using a

localized induction approach and the Biot-Savart law by Hama

(1962) and Moin et al. (1986), respectively. Both these stud-

ies included an isolated hairpin, modelled as a parabola, which

due to its tip curvature has larger normal self-induced velocities

there, thereby bringing in its legs closer together upstream of

the tip, beyond which point these studies were stopped owing

to worsening numerical accuracies. Additionally, Moin et al.

(1986) also studied the Biot-Savart evolution of this isolated

hairpin in the presence of a wall and uniform shear, and specu-

lated that viscous vortex reconnection can occur when hairpin

legs come closer, leading to the formation of ring-like vortices.

However, such a vortex reconnection in hairpin vortices formed

during a round jet transition is yet to be demonstrated, which

we show in this work.

More recently, Biot-Savart evolution of antiparallel vor-

tex rings has been studied, first in an ideal fluid by De Waele

& Aarts (1994), who concluded that vortices form a pyramid

structure at their closest approach point, independent of ini-

tial conditions. Hussain & Duraisamy (2011) in their DNS

of antiparallel line vortices included the effect of viscosity at

the closest approach point over a range of Reynolds numbers

'4 = Γ/a (250-9000), where Γ and a are circulation and kine-

matic viscosity, respectively. They observed a cascade of vis-

cous vortex reconnection events, confirming the conclusions of

Melander & Hussain (1988) that the viscous reconnection is not

always completed at one go and that there are left over vortices

that may undergo further reconnections at the smaller scales

(see also Yao & Hussain, 2020b). Based on such observations,

Moffatt & Kimura (2019a,b) proposed the pyramid model of

viscous vortex reconnection, where two approaching vortices

are set on two opposite faces of a pyramid that reconnect near

the pyramid tip, thereafter moving downwards to complemen-

tary faces, while the surviving vortices move upwards to the

tip for further reconnections.

In this work, to demonstrate the viscous vortex reconnec-

tions in hairpin structures, we use the isolated hairpin configu-

ration of Moin et al. (1986), but allow for its viscous evolution

via a DNS. Instead of a parabola, as taken by Moin et al. (1986),

our isolated hairpin is a semi-ellipse with Gaussian vorticity

distribution inside its core. Further, we also investigate the ef-
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fect of uniformly convecting background streams and uniform

background shears on this hairpin, which act here as simplified

models for the presence of other vortical structures during a

round jet transition process.

NUMERICAL METHODS
The initial velocity field is obtained from a Gaussian vor-

ticity field by solving Poisson equations, with the latter as the

source term. This vorticity field is specified inside the core of

an ellipse of radius 0, which is centrally-located on the H = 0

plane with an aspect ratio of AR = 0′/1′ = 20, where 0′ and 1′

are the lengths of the semi-major and semi-minor axis, respec-

tively (see Fig. 1). The computational domain has dimensions

of 0 < G < !G , −!H/4 < H < 3!H/4 and −!I/2 < I < !I/2, as

shown in Fig. 1, with the length and time scales for the nondi-

mensionalization being 1′ and 1′2/Γ, respectively. In this

work, both the DNS and the solutions to Poisson equations are

obtained via the open-source, incompressible Navier-Stokes

solver, Incompact3D (Laizet & Lamballais, 2009; Laizet & Li,

2011).

In addition to the initial velocity field of the hairpin, we

also study cases where a uniformly convecting background flow

and a uniform background shear are added, to understand their

roles in the hairpin evolution. A free-slip boundary condition is

specified in the H direction when simulating these background

flows, which are defined as DG (G, H, I) = (H+*2 , with*2 cho-

sen based on the slope ( such that the streamwise velocity

DG is non-zero at the lower boundary H = −!H/4 (see Table 1

and Fig. 1). A Neumann condition is imposed at the G = 0

boundary by forcing the normal derivative of all the velocity

components to zero, since it then allows the hairpin to move

freely at the inflow end, which gets distorted otherwise due to

its self-induced velocity and the background flow, if present.

At G = !G , convective boundary conditions are applied, while

in the I direction, we use periodic boundary conditions. The

length (same as that of Moin et al., 1986) and position of the

hairpin are chosen such that its tip evolution is unaffected by

the boundaries. Further, an averaging operation is performed

at each time step to preserve its initial symmetry about the I = 0

plane (see Fig. 1).

The grid resolution is chosen based on the conservation of

volume-integrated kinetic energy (�+ ) and the convergence of

�+ and enstrophy (Ω). The maximum relative error between

the left and right-hand sides of the kinetic energy conservation

equation is less than 1.7% for the cases in Table 1, while

the relative error for enstrophy and volume-integrated kinetic

energy between the coarse (grid resolution of Table 1) and fine

grid is ≈ 0.7% and ≈ 0.3%, respectively (see Naveen, 2022, for

convergence studies).

RESULTS
We first show the temporal evolution of azimuthal insta-

bility in an isolated vortex ring to demonstrate the occurrence

of halo and hairpin-like vortices. This is shown in Fig. 2 at

a few representative times, computed via Incompact3D fol-

lowing the procedure of Archer et al. (2008). Clearly, the

formation of “halo vorticity”and their break down into a se-

ries of hairpin-like vortices can be seen in Figs. 2(1) and (2),

respectively (see Naveen, 2022, for more details). Note that un-

like in wall-bounded flows, here, such hairpin-like structures

seem to coexist with a range of smaller scales so the latter may

be presumed to have a role on the evolution of these hairpins,

leading to the eventual ring breakdown. As a first step toward

Table 1. Cases used for the study of hairpin vortex evolution.

The core radius is 0.3 for all the cases in this table.

Case !G !H !I #G #H #I *2 ( '4

HW1 25 20 10 641 513 256 0 0 3000

HW2 25 20 10 641 513 256 0 0 1500

HU1 35 20 10 897 513 256 0.2 0 1500

HU2 35 20 10 897 513 256 0.1 0 1500

HS1 35 20 10 897 513 256 0.2 0.01 1500

HS2 35 20 10 897 513 256 0.2 -0.01 1500

decoding such a breakdown, we study the evolution of an iso-

lated hairpin vortex, also in the presence of either a uniformly

convecting stream or a uniformly shearing flow. Using a quies-

cent flow, we first explore the effect of Reynolds number on the

hairpin vortex evolution, followed by the background flows.

Our simulations with quiescent flow are designated with the

prefix HW, while the cases with a uniformly convecting stream

and uniform shear have prefixes HU and HS, respectively (see

also Table 1).

Effects of Reynolds number
The effects of Reynolds number on the hairpin evolution is

explored in cases HW1 and HW2 of Table 1 and demonstrated

in Figs. 3-5. In both the cases, the initial evolution of the

hairpin tip is similar to the Biot-Savart evolution of Moin et al.

(1986), where the entire hairpin shows an upward motion due

to its self-induced velocity as its legs act as counter-rotating

line vortices (compare the location of hairpin in (0) and (3) of

Fig. 3). Additionally, the hairpin tip is raised above the plane

of its legs due to an increased self-induced velocity caused by

the small radius of curvature there. Later, with an increased

radius of curvature it attains a circular shape, which brings the

hairpin legs closer upstream (see Fig. 31). The evolution of our

hairpin beyond this point departs from the Biot-Savart evolution

of hairpin line vortices, as studied by Moin et al. (1986), who

were unable to continue their Biot-Savart evolution further due

to worsening numerical accuracy. In spite of this, Moin et al.

(1986) had speculated the occurrence of vortex reconnection as

the viscous effects would start to dominate, splitting the initial

hairpin into a secondary hairpin and vortex ring. Our DNS

simulations clearly demonstrate this event of viscous vortex

reconnection and the associated splitting of the initial hairpin

vortex (see Figs. 31-3).

In Fig. 4, a closer look of the reconnection process shows

it to be almost identical to that in other configurations, e.g. an-

tiparallel line vortices (see Yao & Hussain, 2020b), where the

self-induced velocity brings the hairpin legs closer, upstream

of its tip, leading to their collision. At the collision point, the

vorticity in the adjacent legs gets annihilated due to viscosity

which leads to the closest vortex lines from the legs to get cut

and connect. Such connected vortex lines are next brought to

the top, get stretched due to the induced velocities, eventually

becoming perpendicular to the legs (see Melander & Hussain,

1988). With time, more such vortex lines are connected and

brought to the top, thereby forming a perpendicular bridge

(see Fig. 40). This process continues until the bridges start to

move away from each other due to their self-induced velocities,

leaving the unreconnected vortex lines in the form of antipar-

allel sheet-like structures, called threads (see Fig. 41). The
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Figure 1. (0) Plan view and (1) end view showing the initial location of the hairpin vortex in the computational domain visualised with

contour of _2 = −0.1 and coloured with axial vorticity (lG). The I = 0 and H = 0 planes are represented as · · · · · ·and · · · · · ·, respectively.

The grey arrows in (1) indicate the background velocity field (DG) for the cases HU1 (I < 0) and HS1 (I > 0).
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Figure 2. Evolution of vortex ring shown with contours of _2 = −0.001 at different times (a) t = 110; (b) t = 150; (c) t = 176.5.
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Figure 3. Isosurfaces of vorticity magnitude |8 | = 0.15|8|0 coloured with contours of lG for the case HW1 at C = 0 (0), C = 55 (1),

C = 65 (2) and C = 80 (3). The inflow plane is coloured in grey and a part of axis is provided in (0) and (3) to show the upward motion

of the hairpin vortex as the simulation proceeds from C = 0 (0) to C = 80 (3). Here, |8|0 is the maximum vorticity magnitude at C = 0.

induced velocity of the bridges between the threads is similar

to a planar jet-like flow, which reverses the curvature of the

threads and slows down their reconnection. At the same time,

the mutual induction between these threads causes their peak
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Figure 4. A closer look at the viscous vortex reconnection process in Fig. 3 at different times (a) t = 55; (b) t = 57; (c) t = 65 and (d) t

= 80.
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Figure 5. Time evolution of (0) separation distance and (1) maximum enstrophy for the cases HW1 (· · · · · ·) and HW2

(—). The vertical dashed lines denote minimum separation distance at C = 53 (HW1) and C = 61 (HW2) in (0), while in (1) they

denote local peaks at C = 57 (HW1) and C = 65 (HW2).

vorticity regions to convect faster, leading to the formation of

a head-tail structure (see Fig. 42), where the head part forms

a vortex dipole, while the tail gets dissipated due to viscosity

(see Fig. 43). However, unlike antiparallel line vortices, in

cases HW1 and HW2, the reconnection plane actually moves

towards the inflow plane due to the self-induced velocity of the

hairpin tip (see Figs. 30 and 33). In fact, Melander & Hussain

(1988) divided this whole process into three stages: (I) inviscid

advection, (II) bridging and (III) threading, all of which are

clearly visible in Figs. 3 and 4.

The evolution of the hairpin at '4 = 1500 (case HW2 of

Table 1) is identical to that of the higher Reynolds number

case HW1, except the onset of the reconnection process getting

delayed and its duration extended, which can be observed from

the evolution of separation distance 3 and maximum enstrophy

Ω
<, shown in Fig. 5. For finding 3, the vortex centre tracking

method using vortex lines is used (see Yao & Hussain, 2020c),

where a single vortex line is injected from the vorticity centroid

of the hairpin leg at I > 0, such that it traces the entire hairpin

vortex. This yields the minimum distance between the hairpin

legs before reconnection, while after reconnection two vortex

lines are needed to find the separation distance: one of which is

injected from the inflow plane and the other from the vorticity

centroid of the vortex ring core in I = 0 plane.

At the lower '4 (case HW2), the reconnection is delayed

and thus both the separation distance attaining its minimum

(see Fig. 50) and the maximum enstrophy reaching its local

peak happen at later times (see Fig. 51). Note that the value

of Ω< peaks after reconnection due to the formation of small-

scale structures (Hussain & Duraisamy, 2011; Yao & Hussain,

2020b), while in Fig. 5(1), multiple peaks in Ω
< at '4 = 3000

are visible, whereas for '4 = 1500, a single peak is seen. In

fact, the number of such peaks and their magnitudes increases

with '4, which is important in determining whether a finite

time singularity (FTS) is possible for the Navier-Stokes equa-

tions (see Beale et al., 1984; Fefferman, 2006). We briefly

note that the theoretical model of Moffatt & Kimura (2019b)

predicted the presence of a physical, but not a mathematical

singularity, while the DNS results of Yao & Hussain (2020a)

showed that even a physical singularity is impossible, even

though its occurrence in the inviscid limit is unknown yet.

As expected, increased viscosity also leads to thicker vor-

tex cores and slower movements of the reconnection plane

towards the inflow (see for case HW2), but the three stages of

reconnection identified by Melander & Hussain (1988) remains

identical. For even higher Reynolds numbers ('4 > 3000), the

bridges move away faster, leading to threads that cut and recon-

nect, while the tail portion of the head-tail structure become

unstable via Kelvin-Helmholtz instability, rolling up into multi-

ple dipoles. These head dipoles undergo further reconnections

leading to the formation of vortex rings, hairpin packets and

several small-scale structures (Yao & Hussain, 2020b; Mcgavin

& Pontin, 2018; Beardsell et al., 2016; Hussain & Duraisamy,

2011).

Effects of background flows
In Figs. 6 and 7, we compare the cases with background

flows with the case in quiescent fluid, all at '4 = 1500, via

the changes in different parameters due to the inclusion of

background flows. The isosurfaces of vorticity magnitude in

Fig. 6 clearly show the hairpin vortex to get convected along

with the corresponding background flow, increasing the lengths

of hairpin legs, more so for the case with a higher convection

velocity (see case HU1 of Fig. 60), as expected. Similarly,

the case with positive shear (case HS1 of Fig. 62) convects

the hairpin more than that with negative shear (case HS2 of

Fig. 63), as in the former the hairpin moves into higher velocity

regions of the background flow as time progresses. In general,

the background stream opposes the self-induced motions of the

hairpin tip, carrying the tip along with it. Note that Fig. 6 also

shows the onset of a second reconnection process upstream

of the first, indicating the occurrence of a sequence of such
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Figure 6. Isosurfaces of vorticity magnitude |8| = 0.15|8 |0 coloured with contours of lG for the cases HU1 (0), HU2 (1), HS1 (2)

and HS2 (3) at C = 85. The rest are same as figure 3.
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Figure 7. Time evolution of (0) separation distance and (1) maximum enstrophy for the cases HW2 (•), HU1 (×), HU2 (+), HS1

(—) and HS2 (—). The minimum 3 occurs at C = 60.5 (HU1, HU2), C = 61 (HW2, HS2) and C = 61.5 (HS1), while the local

peak in Ω
< occur at C = 65 (HW2, HU1, HU2, HS2) and C = 65.5 (HS1).

reconnections as the hairpin is convected by the background

flow.

As shown in Fig. 70, the time evolution of separation dis-

tances for all the cases at '4 = 1500 studied here (including the

quiescent case HW2) are largely similar before the reconnec-

tion event, except for the slight earlier occurence of the distance

minimum for the uniformly convecting flow cases of HU1 and

HU2. Further, uniform convection yields an insignificant ef-

fect on the evolution of Ω< and its peak value (see Fig. 71).

Note that to compare with the HW2 case, the corresponding

background flows are first subtracted before calculating enstro-

phy for the other cases. Hence, it may be inferred that the

uniform convection of background stream does not alter the

reconnection process in any way, except for the convection of

reconnection plane downstream, thereby reconfirming the local

nature of this process as is also reported in the literature.

In contrast to the uniformly convecting flow cases, once

uniform background shear is applied, although it still has a

rather small effect on 3 during the initial vorticity rearrange-

ment phases, but such a flow significantly alters the dynamics

post reconnection, as is visible in Fig. 7(0). This different

evolution after reconnection occurs as different parts of vor-

tex structures, especially the vortex rings, experience different

background flow velocities, manifested via varying distances

between the secondary hairpin and vortex ring in Fig. 6. The

corresponding reconnection time obtained by fitting the linear

portion of 3 before reconnection indicated slight delayed onset

of the process for cases HS1 and HS2, when compared to the

uniformly convecting cases. On comparing the shear cases, the

local peak of Ω< and the minimum of 3 occurs later for HS1,

indicating a delayed onset of reconnection, while for HS2, they

occur earlier at the same time as that of HW2. At this stage,

the reason for such differences is not clear and more simula-

tions with different background flows and Reynolds numbers

are being carried out, whose findings will be reported in the

future.

SUMMARY

The main findings of this work are summarised in the

following.

1. The evolution of an isolated hairpin vortex in a quies-

cent fluid is identical to the Biot-Savart evolution of the

vortex line till pinch-off (see Moin et al., 1986). The ini-

tial hairpin gets split into a secondary hairpin and vortex

ring due to the viscous vortex reconnection process, as

observed with the present hairpin configuration, which is

also identical to other configurations reported in the liter-

ature, especially antiparallel line vortices (Yao & Hussain,

2020b).

2. A decrease in Reynolds number leads to a delay in the

onset of reconnection and an increase in the duration of

this process.
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3. The addition of a background flow leads to the increase

in length of hairpin legs due to the convection of hairpin

tip with the flow. The uniformly convecting flows do not

alter the reconnection process. In contrast, positive and

negative shear accelerates and decelerates, respectively,

the onset of reconnection.
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