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ABSTRACT
Spectral eddy viscosity models proposed by Kraichnan

(1976) and by Chollet & Lesieur (1981) account explicitly for
physical properties of interscale interactions deduced from an-
alytical theories of turbulence. In the present work we show
that the main features of the subgrid-scale (SGS) energy trans-
fer can also be obtained directly from the evolving large eddy
simulations (LESs), allowing a near autonomous LES where
the SGS model is provided by the analysis of the LES fields
at each time step in simulations. Specifically, the method
computes the SGS energy transfer among resolved scales and
its wave number distribution from the evolving LES velocity
fields. This information is supplemented by well established
asymptotic properties of the energy flux in the inertial range:
its locality scaling exponent 4/3 and the value of the spec-
tral eddy viscosity in the limit k → 0 . The resulting SGS
energy transfer, when cast in the form of a spectral eddy vis-
cosity, allows self-contained simulations without use of extra-
neous SGS models. The method is tested in LES of isotropic
turbulence at high Reynolds number where the inertial range
dynamics is expected and for lower Reynolds number decay-
ing turbulence under conditions of the classical experiments of
Comte-Bellot & Corrsin (1971).

INTRODUCTION
Analytical theories of isotropic turbulence as originated

by Kraichnan’s Direct Interaction Approximation (Kraichnan
(1959)) provide closure expressions for the energy transfer
term T (k) in the spectral kinetic energy equation in terms of
the energy spectrum E(k). Modern, exhaustive review of an-
alytical theories of turbulence and closures has been recently
provided by Zhou (2021). Kraichnan (1976) employed such
closure expressions to compute the subgrid-scale (SGS) en-
ergy transfer TSGS(k|kc) from a range of resolved scales k≤ kc
caused by nonlinear interactions involving subgrid scales k >
kc, where kc is a cutoff wavenumber of a sharp spectral filter.
The SGS energy transfer, when normalized by 2k2E(k), gives
a spectral eddy viscosity νeddy(k|kc). Such an eddy viscosity,
computed for the infinite inertial range spectrum E(k)∼ k−5/3,
has a relatively simple form with a constant plateau for wave
numbers k less than approximately 0.4kc and rising in a form
of a cusp to the maximum value at k = kc (see Fig. 1). Kraich-
nan (1976) used a particular analytical theory, the Test Field
Model (TFM), while Chollet & Lesieur (1981) used another
formulation, the Eddy Damped Quasi-Normal Markovian Ap-
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Figure 1. Spectral eddy viscosity shape functions. Solid line
with symbols ◦: analytical theory of turbulence (EDQNM);
horizontal solid line: asymptotic plateau value from the
EDQNM theory; shape functions computed from LES data
for cases ”ceddy” (solid line), ”pconst” (broken line), ”pvar”
(broken-dotted line).

proximation (EDQNM), with both approaches leading to sim-
ilar eddy viscosities. For the EDQNM formulation the authors
subsequently provided an analytical fit to the computed eddy
viscosity and used it as a SGS model in large eddy simulations
of Navier-Stokes equations (see, e.g., Lesieur (1997); Lesieur
et al. (2005)). In such an approach to SGS modeling the pri-
mary physical quantity is the energy transfer across a wave
number cutoff kc between the resolved scales (k < kc) and
the subgrid-scales (k > kc) and the eddy viscosity is a derived
quantity. This is different from a more common approach to
postulate first a functional form of the eddy viscosity and then
obtain values of model constants that best match known theo-
retical and experimental results for a given turbulent flow. The
former approach can be advantageous if information about the
SGS energy transfer is directly available for a given flow. In
previous work by Domaradzki (2021a,b) it was shown that the
subgrid-scale energy transfer among resolved scales in large
eddy simulations (LES) as well as its wave number distribu-
tion can be obtained directly from the evolving LES velocity
fields. This information, supplemented by known asymptotic
properties of energy flux in the inertial range, when cast in the
form of a spectral eddy viscosity, allows SGS modeling with-
out need for explicit expressions of the analytical theories or
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any other classical SGS models. Effectively, the procedure al-
lows self-contained LES without use of extraneous SGS mod-
els, or equivalently, at each time step the model is obtained
from a simulated field itself and two asymptotic properties of
the energy flux in the inertial range.

DESCRIPTION OF THE METHOD
The spectral LES energy equation for scales k ≤ kc is ob-

tained by defining first energy transfer T<(k|kc) among re-
solved modes, where the notation signifies that only modes
satisfying the inequality k≤ kc, i.e. scales that are fully known
in LES with the cutoff kc, are retained in computing T<(k|kc).
The complete spectral energy equation can then be rewritten
for LES scales k ≤ kc as follows

∂

∂ t
E<(k|kc)=T<(k|kc)+TSGS(k|kc)−2νk2E<(k|kc), k≤ kc,

(1)
where the SGS energy transfer term is

TSGS(k|kc) = T (k)−T<(k|kc), k ≤ kc, (2)

where T (k) is the full nonlinear energy transfer computed us-
ing all modes, resolved and subgrid scale.

Following Kraichnan (1976), the SGS spectral energy
equation can be formally rewritten as

∂

∂ t
E<(k|kc)=T<(k|kc)−2νeddy(k|kc)k2E<(k|kc)−2νk2E<(k|kc)

(3)
where the SGS energy transfer is expressed in the same func-
tional form as the molecular dissipation term by introducing
the theoretical, effective eddy viscosity

νeddy(k|kc) =−
TSGS(k|kc)

2k2E<(k|kc)
. (4)

As stressed before, the eddy viscosity is obtained from the pri-
mary physical quantity which is the energy transfer across a
wave number cutoff kc between resolved scales (k < kc) and
subgrid-scales (k > kc).

It was shown by Domaradzki (2021a) that the task of
modeling TSGS(k|kc) can be productively split into finding the
total SGS transfer/dissipation, integrated over 0 < k < kc and,
separately, its distribution in wave numbers k. The total SGS
energy transfer across the cutoff kc is determined by the for-
mula derived in Domaradzki (2021a) using the Germano iden-
tity (Germano et al. (1991)),

TSGS(kc) =
1

1−b
T res

SGS(
1
2

kc), (5)

where b is a constant and T res
SGS(

1
2 kc) is the energy transfer

computed for the resolved LES modes (k < kc) and the cut-
off (1/2)kc. Using multiple theoretical and DNS results for
inertial range turbulence the constant b was determined to be
approximately b≈ 0.40. The total resolved SGS energy trans-
fer T res

SGS(
1
2 kc) can be computed by integrating expression (2),

written for cutoff 1
2 kc, over all wave numbers less than this

cutoff. However, as shown in Domaradzki (2021a) it can also
be computed using standard LES formulas for SGS dissipation
in the physical space based on the SGS tensor and the resolved
rate-of-strain tensor.

A wave number distribution of the resolved SGS energy
transfer T res

SGS(k|
1
2 kc) can be computed from LES data dur-

ing an actual run and cast in the form of the k-dependent
eddy viscosity (4), which is normalized to unity f res

LES(k|
1
2 kc) =

νres
eddy(k|

1
2 kc)/νres

eddy(
1
2 kc| 12 kc). That last quantity, the eddy vis-

cosity shape function, is rescaled from the test cutoff (1/2)kc
to LES cutoff kc, using the similarity variable 0≤ k/kcuto f f ≤
1. Such computed eddy viscosities for several LES cases are
shown in Fig. 1. Finally, the values of the eddy viscosity at
low k are modified to make them consistent with the asymp-
totic value provided by the analytical theories for the inertial
range at k/kc → 0. Based on results from the EDQNM the-
ory the plateau asymptotic value p was determined as 0.37 of
the peak value at the cusp, i.e., p = 0.37 for the eddy viscos-
ity shape function normalized to unity at kc (horizontal line in
Fig. 1). The final shape function fLES(k|kc) comprise a con-
stant plateau up to an intersection with a cusp of the resolved
shape function f res

LES(k|kc), followed by the unmodified cusp
part from the intersection point to k = kc.

The complete procedure is implemented in several steps.
At each time step in simulations the eddy viscosity is

νeddy(k|kc) =Cm fLES(k|kc), (6)

where Cm is a model constant and fLES(k|kc) is a shape func-
tion, determined as described above. The model constant Cm is
computed using known total SGS energy transfer as an integral
constraint

TSGS(kc) =
∫ kc

0
dkTSGS(k|kc) =−

∫ kc

0
dk νeddy(k|kc)2k2E(k),

(7)
which gives

Cm =
−TSGS(kc)∫ kc

0 fLES(k|kc)2k2E(k)dk
. (8)

In LES runs the eddy viscosity (6) is determined at each time
step in simulations and used in the eddy viscosity term added
to the Navier-Stokes spectral solver as a SGS modeling term.

In (8) TSGS(kc) is expressed in terms of SGS transfer
among resolved scales T res

SGS(
1
2 kc), Eq. (5), computed at each

time step in LES with the spectral eddy viscosity given by (6).
Similarly, the shape function fLES(k|kc) is computed at each
time step from the resolved SGS energy transfer T res

SGS(k|
1
2 kc),

i.e., both factors in the formula (6) are computed from infor-
mation available in LES. In effect, the SGS model is not pre-
scribed but obtained from the resolved SGS energy transfer
T res

SGS(k|
1
2 kc) in a given LES and two well-established proper-

ties of the energy flux for the inertial range in the asymptotic
limit k/kc → 0. Note also that since T res

SGS(k|
1
2 kc) and E(k) in

general are time dependent, both factors in (6) are also func-
tions of time, Cm(t) and fLES(k, t|kc).

The purpose of this paper is to revisit derivations of
parameters b and p and to assess the performance of the
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method for allowable choices of these parameters. In par-
ticular, derivation of constant b using the Germano identity
requires assumptions about a form of the shape function for
the final spectral eddy viscosity. We show that these assump-
tions are not necessary because the constant b can be deduced
from the scaling properties of the energy flux for k/kc → ∞,
without reference to the Germano identity. Similarly, we show
that the plateau value p does not need to be set to a constant
value but can be obtained in course of simulations solely from
the asymptotic properties of the spectral eddy viscosity for
k/kc→ 0.

THE USE OF ASYMPTOTIC PROPERTIES OF
ENERGY FLUX

The constant b was computed in Domaradzki (2021a) us-
ing the Germano identity. However, its value can be obtained
using solely asymptotic properties of the energy flux in the ul-
traviolet limit k/k′→ ∞. Kraichnan (1959) introduced a scale
locality function Πuv(k′|k), k > k′ that measures the amount of
energy flux across k′ caused by interactions involving at least
one wave number mode with a wave number greater than k.
Analytical theories of turbulence consistent with the Kolmogo-
roff inertial range (Kraichnan (1971a,b)) produce the scaling
result

Πuv(k′|k) = K(k′/k)4/3, k� k′. (9)

where K is a constant. This result was reviewed and reinforced
by theoretical analyses of Navier-Stokes solutions by Eyink
(2005) and numerical results of Zhou (1993) and Domaradzki
et al. (2009). The theoretical analysis predicts the scaling ex-
ponent but not the constant K. However, if modes from the
forcing band and the band adjacent to the mesh cutoff are re-
moved from the analysis of DNS data one observes that K ≈ 1
in the entire range of wavenumbers, down to k′/k = 1, as long
as k′ is firmly in the inertial range (Domaradzki et al. (2009)).
Assuming K = 1 and k′ = ak, a < 1, Eq. (9) allows to split the
energy flux across k′ as follows

Π(k′) = a4/3
Π(k′)+Π

res(k′), (10)

where Πres(k′) is contribution to the energy flux across k′ due
to interactions with all modes below wave number k. If k
is a cutoff wave number in LES, k = kc, the second term is
the energy flux across k′ < kc that is resolved using only LES
data and is equal to the resolved SGS energy transfer T res

SGS(k
′).

Also, in the inertial range the total flux is independent of the
wave number and equal to the total SGS energy transfer, i.e.,
Π(k′) = Π(kc) = TSGS(kc). Using this observation Eq. (10)
leads to the relation

TSGS(kc) =
1

1−a4/3
T res

SGS(akc), (11)

which is equation (5) with b = a4/3. Specifically, for a = 1/2
the value of b≈ 0.4.

Analytical theories of turbulence predict dependence of a
spectral eddy viscosity on a wave number, νeddy(k|kc). The

present method, however, uses only the value of the eddy vis-
cosity in the infrared limit k/kc → 0. In that limit the eddy
viscosity has a form

νeddy(0|kc) =
1
15

∫
∞

kc

θ0qq

[
5E(q, t)+q

∂E(q, t)
∂q

]
dq, (12)

where θ0qq is a triad interaction time in that limit, where q> kc
(Kraichnan (1976); Lesieur (1997)). Despite differences in
definitions of θ for different analytical theories they all lead
to essentially same value of νeddy(0|kc) for the inertial range
spectrum E(q, t)∼ q−5/3. In Domaradzki (2021b) νeddy(0|kc)
was used to constrain the plateau of the eddy viscosity com-
puted from LES data to p = 0.37 of the peak value at the LES
cutoff kc, consistent with the prediction of the EDQNM the-
ory. This is a pointwise constraint in a sense that it is based on
the ratio of the eddy viscosity at two points k = 0 and k = kc.
Since the cusp value at kc results from local interactions of
modes with wave numbers in the vicinity of kc the parameter p
is not strictly dependent only on the asymptotic properties for
k/kc→ 0. To retain a dependence of the plateau level only on
asymptotic values at k/kc→ 0 we have explored replacing the
pointwise constraint by an integral constraint, based on knowl-
edge of the total SGS energy transfer (11). The total transfer
TSGS(kc) allows to define the average constant eddy viscosity
for LES with cutoff kc, ν̄eddy(kc), through the relation

TSGS(kc) =−2ν̄eddy(kc)
∫ kc

0
k2E(k)dk. (13)

The ratio of asymptotic eddy viscosity from the EDQNM the-
ory and the averaged eddy viscosity with the same energy flux
is (Lesieur (1997))

νeddy(0|kc)

ν̄eddy(kc)
=

0.441
(2/3)

= 0.6615. (14)

Note that the averaged eddy viscosity is not dependent
on any specific analytical theory so the equation (14) allows
to determine the plateau value of the eddy viscosity entirely
from the integral relation (13) rather than from the ratio of
point values. Parameter p refers to eddy viscosity normal-
ized to unity at k/kc = 1, with the normalization factor being
the maximum value of the resolved eddy viscosity at the cusp
νres

max = νres
eddy(

1
2 kc| 12 kc), giving for p

p = fLES(0|kc) = 0.6615
ν̄eddy(kc)

νres
max

, (15)

which is a time-dependent quantity because both ν̄eddy and
νres

max are functions of time.

RESULTS
To test these concepts and the proposed modification of

the method we have performed several forced large eddy sim-
ulations initialized with k−5/3 energy spectrum. Details of
the numerical method and parameters in the simulations are
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Figure 2. Results for forced LES. Solid line: k−independent
eddy viscosity, case ”ceddy”; broken line: case ”pconst” with
p = 0.37; broken-dotted line: case ”pvar” with time dependent
p given by Eq. (15). Thin straight lines show, as appropriate,
−5/3 slope, and a boundary of the forcing band at k = 3. For
compensated spectra in the bottom figure horizontal lines mark
expected range of values for the Kolmogoroff constant.

provided in Domaradzki (2021a,b) for corresponding LES in
those papers. Specifically, Reynolds numbers Reλ exceed 104,
indicating that the inertial range theory should apply. LESs
were run with a resolution of 643 modes for 3000 time steps,
corresponding to about 15 large eddy turnover times, and re-
sults for plotting were averaged over last 1000 time steps.
Three implementations of the method were employed. In all
cases the parameter b = 0.4. Case ”ceddy” corresponds to pre-
scribed shape function independent of k, i.e., f0(k|kc) = 1 (see
Domaradzki (2021a)). Effectively it is a constant in k eddy
viscosity enforcing the integral relation (7). The case ”pconst”
implements the method with fixed value of parameter p= 0.37
(see Domaradzki (2021b)). Finally, the case ”pvar” imple-
ments the method with value of p varying in time according to
Eq. (15). One can think of these three cases as a progression
in relaxing constraints on the model. Case ”ceddy” prescribes
probably the simplest form of the spectral eddy viscosity, sim-
ilar to constant molecular viscosity ν . However, that eddy vis-
cosity is time dependent, with the dependence imposed by en-
forcing the total SGS energy constraint (7) (or (13)). In cases
”pconst” and ”pvar” the model shape function fLES is not fully
prescribed but partially recovered from the the eddy viscosity
obtained from the LES fields. Specifically, the eddy viscos-
ity from LES data in the low wavenumber range is replaced
by a constant in k plateau up to point where the plateau inter-
sects the rising cusp in the eddy viscosity curve (Fig. 1). That
part of the unmodified cusp is responsible for about 50% of
the total SGS transfer. In case ”pconst” the plateau value p is
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Figure 3. Time evolution of energy spectra in LES for a de-
caying Comte-Bellot and Corrsin case (symbols show exper-
imental data). Top figure for time interval U0t/M = [42,98];
run continued in the bottom figure for time interval U0t/M =

[98,171].

constant and is determined by a ratio of pointwise values of
theoretical eddy viscosity at k = 0 and k = kc. In case ”pvar”
the plateau value varies in time but depends only on theoretical
eddy viscosity at k = 0 through formula (15), as a fraction of
the averaged, k−independent eddy viscosity.

In Fig. 2 we plot energy spectra obtained using all three
implementations. In all cases the spectral energy slopes at late
times are in an an excellent agreement with −5/3 exponent,
though the case ”ceddy” exhibits slight departure from that
form in the vicinity of kc. The compensated spectra in a form
of a k-dependent Kolmogoroff function

CK(k) =
E(k)

ε2/3k−5/3
, (16)

fall within the expected range 1.4− 2.1 outside the forcing
wave numbers. However, as the cutoff kc is approached the
case ”ceddy” shows a steep increase in CK . The behaviour
of spectra for this case in the vicinity of kc is consistent with
insufficient SGS dissipation in that range. The presence of a
cusp at kc in the eddy viscosity for two other cases (see Fig. 1)
increases SGS dissipation in the vicinity of kc, leading to better
agreement with the inertial range form. It is quite clear, how-
ever, that all three approaches produce overall similar and ac-
ceptable spectral results. This implies that the total SGS trans-
fer constraint (7), being the same for all cases, must play the
primary role, while the eddy viscosity wave number distribu-
tion plays a secondary role.
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In practice, however, enforcing constant value of p (case
”pconst”) was found to result in most robust LES for several
other cases of isotropic turbulence, forced and decaying, at
very high as well as at low Reynolds numbers (Domaradzki
(2021b)). As an example we show in Fig. 3 results of LES
with p = 0.37 for the classical experimental dataset of Comte-
Bellot & Corrsin (1971) (for more details see Domaradzki
(2021b)). Nevertheless, relaxing extraneous information in-
put by making the parameter p variable through Eq. (15) pro-
vides valuable guidance regarding the goal of designing an au-
tonomous LES. We showed that a near autonomous LES pro-
cedure is possible, in a sense that beyond actual LES data only
two asymptotic results from theory of turbulence are needed:
ultraviolet scaling of the energy flux for k/kc→∞ and infrared
limit of spectral eddy viscosity for k/kc → 0. It is difficult to
anticipate that further limiting this information input could re-
sult in acceptable LES methods.

CONCLUSIONS
A previously proposed subgrid-scale modeling procedure

of Domaradzki (2021a,b), based on the interscale energy trans-
fer among resolved scales in LES, has been improved by in-
creasing its reliance on information available directly from
known LES fields and minimizing information from theories
of turbulence. The original procedure consists of two steps.
In the first step, the total unknown SGS transfer across a fixed
cutoff wave number kc is determined using the computed SGS
transfer within the resolved range for the cutoff akc, a < 1,
with a set to 1

2 in this paper. The main parameter in this step
is a ratio b of the SGS transfer at test cutoff akc due to interac-
tions with scales above the LES cutoff kc. In the second step
a distribution of SGS transfer among resolved wave numbers
k < kc is determined through an eddy viscosity shape func-
tion f (k|kc), normalized to unity at the cutoff kc. The shape
function is obtained directly from a k-dependent eddy viscos-
ity computed using the actual, resolved SGS transfer at the
test cutoff akc. Such an eddy viscosity is qualitatively simi-
lar to the eddy viscosity computed from the analytical theo-
ries of turbulence, exhibiting a low wave number plateau and
a cusp at akc. However, the low wave number plateau level
is too small because the resolved SGS transfer is lacking con-
tributions from the nonlocal interactions with modes k > kc.
The missing interactions were accounted for by replacing the
computed plateau by a k-independent value p, representing a
constant asymptotic eddy viscosity acting on large eddies by
small eddies in the presence of a spectral gap (here between
(1/2)kc and kc). For such a hybrid shape function the cusp
is attributable primarily to local interactions and its values,
greater than the plateau value p, are responsible for about 50%
of the total SGS dissipation. This local transfer is not modeled
but is a result of the actual interscale interactions operating at
a given time step in actual LES. This implementation of the
method was very successful in LES of forced, high Reynolds
number turbulence, and for decaying turbulence at both high
and low Reynolds numbers.

The secondary motivations behind this research was to
explore what is minimum information input into LES as com-
pared with DNS for the same physical problem. We postu-
lated a target of fully autonomous LES, defined as a simulation
that produces the same quality results within resolved range
of scales as DNS, and uses only the same information that is
available to DNS. In the previous work we showed that infor-
mation about the total SGS transfer and the partial dependence

of the spectral eddy viscosity on k can be extracted from evolv-
ing LES fields, thus moving us in the direction of autonomous
LES. The original method, however, requires constants b and
p, that are not needed in DNS of the same flows, and thus con-
stitute extraneous information input. The purpose of this paper
was to revisit derivations of parameters b and p in order to min-
imize such extraneous information. In particular, derivation of
constant b using the Germano identity requires assumptions
about a form of the shape function for the final spectral eddy
viscosity. We showed that such assumptions can be entirely
avoided because the constant b can be deduced solely from the
scaling properties of the energy flux for k/kc → ∞, without
reference to the Germano identity. Similarly, we showed that
the plateau value p does not need to be set to a constant value
but can be obtained in course of simulations solely from the
asymptotic properties of the spectral eddy viscosity in the limit
k/kc→ 0. It may be that such asymptotics constitute minimum
extraneous information required for well behaved LES of ho-
mogeneous, isotropic turbulence, especially for high Reynolds
numbers. If that is the case the proposed method can be con-
sidered as a near-autonomous LES in a sense that minimizing
further extraneous information input is unlikely to be possible.
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