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ABSTRACT
The merging of diverse sources of information describing the
same phenomenon is currently an active area of scientific re-
search. In this scope, an attempt based on the SIMPLE al-
gorithm is presented for the integration of time-averaged pla-
nar PIV velocity measurements into a CFD code. The mea-
surements are adjusted/corrected by the CFD calculation of
the time-averaged velocity fields through which the respective
pressure fields are also computed. Boundary conditions are ap-
plied based on the PIV data by imposing a layer of constant ve-
locity values near the boundaries i.e. constant first and second
normal derivatives. The novelty of this approach derives not
only from the integration of PIV measurements but also from
the utilisation of PIV statistics for the direct computation of the
Reynolds Stresses and their introduction into the source terms
of the Reynolds averaged equations. This permits application
to steady state turbulent flow fields without the need for a nu-
merical turbulence closure model. The application is the case
of a cube with openings, immersed in a boundary-layer flow at
an angle of attack equal to 0 degrees. The calculated velocity
fields as well as the respective pressure fields are found to be
physically consistent, while the inherent turbulent structure of
the flow is taken into account.

INTRODUCTION
The traditional approach in the field of Fluid Mechanics

treats the solutions acquired through CFD and Experimental
Fluid Mechanics as discrete and separate sources of informa-
tion, even though they may refer to a common phenomenon.
For that reason, the integration of measurements into a CFD
code is a significant advancement, in order to capitalise on
both these disciplines. Moreover, for problems concerning
real flows, the imposition of exact boundary conditions on the
equations of a CFD code is not always feasible as turbulence
models are not always capable of encapsulating the inherent
structure of the flow (Hayase, 2015).

As van Oudheusden et al. (2007) mention, the PIV
measurement technique constitutes a non-intrusive method to
study very complex flows and has emerged as an accurate and
credible tool for fundamental and industrial fluid dynamics in-

vestigation over the last decades, being able to extract instan-
taneous velocity fields simultaneously over large domains of
interest. Hence, the PIV technique is a natural selection for
the purpose of combining measurements with CFD codes.

The fundamental idea has been introduced in the past.
Hayase and Hayashi (1997) proposed a methodology where
the SIMPLER algorithm uses partial experimental informa-
tion as feedback for the reconstruction of the boundary con-
ditions of turbulent simulations. Two other attempts may also
be noted: Jaw et al. (2009) implemented a SIMPLER based
method where 2D PIV data are integrated and the respec-
tive pressure fields of steady-state, incompressible, laminar
flows are calculated, while Gunaydinoglu and Kurtulus (2020),
again with a SIMPLER-based algorithm, extracted pressure
fields of incompressible, laminar, steady as well as unsteady
flows, utilising 2D PIV velocity data. Although the methodol-
ogy of the two forenamed attempts is quite similar to the one
presented here, they do not include turbulence closure. Re-
garding the computation of the pressure fields from PIV data,
numerous endeavours based on the solution of a Poisson pres-
sure equation can be found (Vanierschot and Van den Bulck,
2008, Suryadi and Obi, 2011 , Van der Kindere et al., 2019).
It has to be noted though that in these methods PIV velocity
fields remain unchanged and thus do not constitute measure-
ment integration into CFD calculations per se.

The methodology that is implemented in the present en-
deavour is a SIMPLE algorithm-based one, where a finite vol-
ume method is applied for the discretisation of the 2D RANS
equations, boundary conditions are imposed from unchang-
ing PIV data and turbulence is included through the Reynolds
Stresses, calculated directly from the statistics of the PIV ex-
periment. The calculation procedure thus includes turbulence
effects, avoiding the assumptions related to numerical turbu-
lence closure models, and ensures conservation of mass and
momentum through the solution of the corresponding equa-
tions. Furthermore, it arguably ensures better compliance of
the CFD solution to the inherent physics of the flow being
studied, since turbulence models are usually calibrated in order
to be consistent with the prediction of fundamental flows e.g.
homogeneous isotropic turbulence, logarithmic law boundary
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layer etc. (Duraisamy et al., 2019). The aforementioned
methodology is applied for three regions lying on the symme-
try plane of the flow around a cube with openings, immersed in
a boundary-layer at an angle of attack equal to 0 degrees, util-
ising PIV data originating from the experiment of Manolesos
et al. (2018).

EQUATIONS AND ITERATIVE METHOD
In this section, the basic equations that are solved are

presented. Firstly, the 2D steady-state Reynolds-Averaged
Navier-Stokes (RANS) momentum equation (1) in tensor form
is given along with the continuity equation (2), for incompress-
ible flow. Although the continuity equation is not solved di-
rectly throughout this method, it is a key component as it is
imperative for the deduction of the pressure correction equa-
tion (Patankar, 1980).
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Here i, j = 1 or 2 (with respect to x and y direction), ∆

is the Laplace operator, ρ and µ are the density and dynamic
viscosity respectively and the last term on the right hand-side
of the equation corresponds to the Reynolds Stress gradients.

By deploying the finite volume method in equation (1),
a pentadiagonal linear system for each direction (x and y) is
derived, which is solved by the Alternating-Direction Implicit
Method (ADI). Here, the terms corresponding to the Reynolds
Stresses are included in the source terms of the discretised
momentum equations, instead of being modelled. An analo-
gous pentadiagonal linear system, corresponding to the pres-
sure correction can be extracted (Patankar, 1980).

The Reynolds Stresses terms can be computed directly
from the statistics of the experiment. If N is the total number
of PIV snapshots then the equation, in tensor form, of these
terms is written as follows:
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∑
k=1

u′i,ku′j,k
N
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The computational grid is almost identical to the PIV one,
so interpolation is not necessary to produce the initial CFD val-
ues. The initial velocity field and of course the statistics for the
Reynolds Stresses, for the commencement of the iterative al-
gorithm, are provided by the PIV data.

This direct calculation of Reynolds Stresses from PIV
data is evidently limited by the PIV resolved length/time
scales, therefore a number of higher frequencies intrinsically
linked to the nature of turbulent flows cannot be included.
However, in the examined case, where the CFD grid is almost
identical to the PIV one, the aforementioned physical limita-
tion is assumed not to be crucial, since the CFD solution is not
expected to resolve sub-PIV length/time scales.

The type of boundary conditions (BC) that is deployed
imposes constant velocities and convective terms on a bound-
ary zone which contains three lines/layers of grid points and
two finite volumes adjacent to each boundary, respectively.
Initial attempts to use Dirichlet boundary conditions at the

boundary nodes (i.e. constant velocities, u and v with respect
to the x and y directions, and constant convective terms) were
ineffective.

The modified SIMPLE iterative algorithm for the extrac-
tion of the results consists of the following steps:

1. The pressure correction equation is solved, after having
introduced as initial velocity fields those emanating from
the PIV measurements.

2. The adjusted/corrected velocity and pressure fields are
calculated by implementing the standard SIMPLE correc-
tion equations.

3. The RANS momentum equations are solved with respect
to the x and y direction with Reynolds Stresses included in
the source terms of the discretised form of the equations.

4. The aforementioned iterative steps are repeated until there
is the best possible convergence.

The method was developed using an in-house code, which
is a standard finite volume implementation of the SIMPLE
algorithm on a Cartesian grid with collocated variables and
has been used in numerous studies e.g. Bouris and Bergeles
(1999), Jurelionis and Bouris (2016) and Konstantinidis and
Bouris (2016).

RESULTS
Configuration of the experiment

The configuration of the experiment that Manolesos
et al. (2018) conducted at the National Technical Uni-
versity of Athens wind tunnel, in the large test section
(2.5m×3.5m×12m) is given in Figure 1.

Figure 1. Geometry and configuration of the PIV experiment (Manole-
sos et al., 2018). Left: side view with upstream velocity profile, Right:
top view.

The present 2D method is applied to the case of high
shear flow around the surface mounted cube immersed in a
boundary-layer flow. The method has already been success-
fully applied to the case of a solid cube (Pallas and Bouris,
2022) but here, a more complex situation is considered where
a thin vertical opening is present at the center of the upstream
and downstream face of the cube (see Manolesos et al., 2018).
A, B and C are planes of symmetry and they are parallel to the
vector of the free stream velocity. Owing to the assumed two-
dimensional nature of the mean flow on these planes, results
for plane A, B and C will be presented. Table 1 illustrates the
basic grid and geometric parameters for the three planes. It is
noted that the CFD spatial resolution is the same as the PIV
one and that the PIV/CFD grid is uniform and collocated.

Apart from the PIV experiment, pressure taps, were
utilised for the extraction of profiles of the pressure coefficient,
CPexp (Manolesos et al., 2017) along the plane of symmetry, on
the centre line of the front, the roof and the back face walls of
the cube (Figure 2), so they could be compared with the CFD-
calculated CP profiles. It should also be noted that the maxi-
mum experimental error of the pressure coefficient is equal to
4.5 %, (the maximum measurement errors of the pressure and
the reference velocity are 3 % (Manolesos et al., 2018) and
1.67 %, respectively).

It has to be clarified that the coordinates X , Y in all the
forthcoming figures are non-dimensionalised with the height
of the cube, Hc = 0.11 m, whilst the thick black line repre-
sents the boundary of the cube. Moreover, the distance of
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the three planes from every solid boundary (i.e. the ground
and the respective walls of the cube) is close to 1cm (or 0.09
in non-dimensional form, so, e.g., for plane A, the point with
X =Xmax, Y = 0.91 corresponds to the upper edge of the cube).
The Reynolds number at cube height exceeded 2 ·104 through-
out the realisation of the experiment, namely it was over the
suggested limit for Reynolds number independence in wind
tunnel tests on buildings (Castro and Robins, 1977). It is noted
that from now on, the overbar denoting time-averaged veloci-
ties will be omitted.

Plane NI NJ Xtot/Hc Ytot/Hc
A 98 95 1.68 1.63
B 99 104 1.52 1.60
C 110 105 1.67 1.59

Table 1. Basic geometric and grid parameters: NI and NJ are the
numbers of the grid lines with respect to the x and y direction, while
Xtot and Ytot are the x and y dimensions of the computational domain.

Figure 2. Pressure measurement locations (Manolesos et al., 2017).

Plane A
Figure 3a, presents the contours of the CFD total velocity

Ut,CFD, extracted with the above-mentioned iterative method-
ology, whilst in Figure 3b those of the uncorrected PIV total
velocity Ut,PIV are given, for the experiment on plane A.

As expected, the CFD-calculated velocity field is similar
to the PIV one. More specifically, the position of the stag-
nation point, namely at approximately (Xmax,0.7), and the
velocity range remain almost invariant after the deployment
of the CFD methodology. Figure 4a, where the relative er-
ror εut (%) = 100 · |ut,CFD−ut,PIV |/|< ut,PIV > | is presented
(ut,CFD and ut,PIV are local, total, CFD and PIV velocities, re-
spectively, whilst < ut,PIV > is the time and spatially averaged
PIV total velocity), further supports the aforementioned argu-
ment. That is to say, its value is maximum only in the area
near the top upstream corner of the cube where the flow ac-
celerates, whereas in the rest of the domain the error remains
below 10−20%. This possibly indicates that the CFD spatial
resolution is inadequate to capture the physics of the flow near
the cube’s upstream corner.

(a) Ut,CFD (m/s) (b) Ut,PIV (m/s)

Figure 3. Contours of the total velocity extracted by: (a) CFD method-
ology, (b) PIV experimental technique, on plane A. X and Y are non-
dimensional coordinates, whereas the thick black line denotes the up-
stream boundary of the cube. Flow is from left to right.

The normalised continuity residual, CRN, which is de-
rived by implementing the discretised form of the continuity
equation, using the PIV velocities on plane A before non-
dimensionalising it with a characteristic velocity gradient i.e.
< ut,PIV > /(2∆x), is shown in the form of contours in Fig-
ure 4b. Similar to the error of Figure 4a, CRN reaches its
highest values near the solid boundary of the cube, whereas
its maximum appears near the top upstream corner. Owing
to the strong coupling between the continuity residual and the
SIMPLE pressure correction equation, one can contend that
the appearance of the maximum relative error near the top up-
stream corner of the cube is partially justified by the fact that
CRN also reaches its highest value there. The higher CRN
values near the upstream wall of the cube could be attributed
to three-dimensional structures of the flow, since the third ve-
locity component, w is not included in the calculation of the
continuity residual. More specifically, the ratio of the third,
not included, velocity component, w (Manolesos et al., 2018,
performed Stereo-PIV), over the u velocity component reaches
its maximum value, namely 60%, near the top upstream corner
of the cube.

(a) ε (%) (b) CRN (%)

Figure 4. Contours of: (a) the non-dimensional error between the CFD
total velocity, ut,CFD, and the PIV one, ut,PIV , on plane A, (b) the non-
dimensional continuity residual derived by the discretised continuity
equation, CRN, on plane A. X and Y are non-dimensional coordinates,
whereas the thick black line denotes the upstream boundary of the
cube. Flow is from left to right.

The pressure field of the experiment on plane A, with re-
spect to a reference pressure located at the upstream bound-
ary of the plane, chosen as the least disturbed point of
the flow, is illustrated in Figure 5a. From the calculated
pressure fields, the profile of the pressure coefficient CP =
(P−Pre f )/(1/2ρU2) (where Pre f = 0 and Pdyn = 1/2ρU2 =
5.99Pa) is extracted along the boundary that corresponds to
the upstream face of the cube (at a distance of approximately
1 cm) and compared with the experimental CPexp , (Manolesos
et al., 2017) in Figure 5b.

(a) P (Pa) (b) CPexp and CP

Figure 5. (a) Relative pressure contours extracted by the developed
methodology, on plane A, (b) comparison between CPexp and CP,
where the Y-axis corresponds to the non-dimensional distance from
the bottom boundary of the domain (Y = 0.91 denotes the upper edge
of the cube), for plane A. Flow is from left to right for (a).

The pressure contours, shown in Figure 5a, indicate the
stagnation point (i.e. (Xmax,0.7)), since the pressure reaches
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its maximum value near this point, in line with the velocity be-
haviour shown in Figure 3. Near the corner, there is a pressure
drop, due to flow acceleration.

Figure 5b, shows that there is a slight difference be-
tween the CFD-calculated pressure coefficient, CP, and the ex-
perimental one, CPexp , i.e. the maximum difference is about
5− 10% of CPexp , which is probably caused by: (i) the refer-
ence pressure is not exactly the same as the experimental ref-
erence one, which was outside the experimental domain avail-
able here, (ii) CP is calculated at a distance of approximately
1 cm and not exactly on the upstream wall, (iii) numerical and
experimental errors, (iv) 3D effects (leading to increased PIV
mass residual).

Plane B
In Figure 6a, the contours of the CFD-calculated total ve-

locity Ut,CFD are given, while in Figure 6b those of the PIV to-
tal velocity Ut,PIV are illustrated, for the experiment on plane
B.

(a) Ut,CFD (m/s) (b) Ut,PIV (m/s)

Figure 6. Contours of the total velocity extracted by: (a) CFD method-
ology, (b) PIV experimental technique, on plane B. X and Y are non-
dimensional coordinates (non-dimensional distance of 1 corresponds
to 1 cube height), whereas the thick black line denotes the roof of the
cube. Flow is from left to right.

Similar to the case of plane A, the iterative method does
not seem to change significantly the velocities on plane B.
More specifically, the region of low velocities near the solid
boundary of the cube remains almost invariant while the ve-
locity range is almost the same for the CFD and PIV velocity
fields. This indicates the potential of the proposed approach in
terms of universality and independence of the specific charac-
teristics of the flow velocities.

(a) ε (%) (b) CRN (%)

Figure 7. Contours of: (a) the non-dimensional error between the CFD
total velocity, ut,CFD, and the PIV one, ut,PIV , for plane B, (b) the non-
dimensional continuity residual derived by the discretised continuity
equation, CRN, for plane B. X and Y are non-dimensional coordinates
(non-dimensional distance of 1 corresponds to 1 cube height), whereas
the thick black line denotes the roof of the cube. Flow is from left to
right.

(a) P (Pa) (b) CPexp and CP

Figure 8. (a) Relative pressure contours extracted by the developed
methodology, for plane B, (b) comparison between CPexp and CP,
where the X-axis corresponds to the non-dimensional distance from
the upstream boundary of the domain, for plane B. Flow is from left to
right for (a).

Figure 7a, where the error/difference between the initial
PIV and the CFD-estimated velocities is shown, further sup-
ports that no significant corrections take place. More specif-
ically, the maximum error is about 10% and appears in the
area of flow acceleration. Generally, a comparison between
the error of plane B and that of plane A, reveals that lesser cor-
rection takes place in plane B. This can be partially attributed
to the much lower continuity residual, as its maximum value,
shown in Figure 7b, is about ten times less than that in plane
A. The ratio of the third, not included, velocity component,
w (Manolesos et al., 2018, performed Stereo-PIV), over the u
velocity component (not shown) is close to zero in most parts
of the examined domain except for the region near the roof of
the cube where it is about 24%. This is generally better than in
plane A and may partially justify the lower values of CRN for
plane B in comparison with those for plane A.

The relative pressure field of the experiment on plane B,
with respect to a reference pressure located at the top upstream
corner of the domain (where the flow can be considered free
stream) is illustrated in Figure 8a, whereas in Figure 8b a com-
parison between CP and CPexp (Manolesos et al., 2017) is pre-
sented for plane B. It should be noted that the reference pres-
sures in planes A, B (and C, presented following) could be
significantly different.

Figure 8a presents a physically consistent behaviour of
pressure. That is to say, it reaches its maximum value near the
inlet, namely 5 Pa above the free stream value, as it is influ-
enced by the stagnation that takes place on the upstream solid
boundary of the cube. After the region of positive pressures,
there is a pressure drop due to flow acceleration, a conclusion
in line with the results of other researchers, such as Hölscher
and Niemann (1998), Castro and Robins (1977).

Regarding the comparison between CPexp and CP, it can
be said that the calculated pressure coefficient is close to the
measured values with an exception being the first measurement
point where a large difference can be observed. This probably
indicates that the spatial resolution in conjunction with Neu-
mann boundary conditions, are incapable of depicting suitably
the local physics of the flow, i.e. the steep pressure gradient.
The fact that velocity measurements could not be performed
up to the surface where pressure was measured exacerbates
this. Indicative remedies for this drawback of the developed
approach will be given in the section of conclusions.

Plane C
Figure 9 illustrates the contours of the CFD-calculated to-

tal velocity Ut,CFD as well as those of the PIV total velocity
Ut,PIV , for plane C.
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A characteristic element of the experiment on this do-
main, is the flow out of the opening on the downstream face
of the cube (at X = 0 and Y = 0 to 1).

(a) Ut,CFD (m/s) (b) Ut,PIV (m/s)

Figure 9. Contours of the total velocity extracted by: (a) CFD method-
ology, (b) PIV experimental technique, on plane C. X and Y are non-
dimensional coordinates, whereas the thick black line denotes the
downstream boundary of the cube. Flow is from left to right.

Although the velocity range remains invariant after the it-
erative method, significant modifications are observed in the
region of low total velocities in the wake of the cube. Figure
10a supports the forenamed statement, since the normalised
error/difference between the PIV and CFD velocities reaches
a maximum value of 90 %. More specifically, there is an ex-
tended area coinciding with that of almost zero total velocities,
where the error is higher than 50%.

The fact that the continuity residual shown in Figure 10b
reaches a maximum value of 23%, namely a value of CRN
lower than that for plane A, probably indicates that the mass
residual of the domain does not constitute the most critical pa-
rameter for the departure of the CFD velocity field from that
of the PIV measurements. It has to be noted that the highest
CRN values are observed near the solid boundary of the cube,
which is in line with the results for plane A.

The ratio of the third velocity component, w, (Manole-
sos et al., 2018, performed Stereo-PIV), over the u velocity
component (not shown here) generally is higher than that of
the above-presented planes. However, the highest values are
observed at points where the u velocity component is close
to zero. Moreover, if three-dimensional flow structures were
predominant, this would also be manifested in an increase of
the values of CRN, whose values however, in this case, remain
moderate.

All the aforementioned analysis, indicates that one might
seek the reason for this discrepancy between the CFD and PIV
velocities in the low CFD spatial resolution, since it is prob-
ably inadequate to capture the complex physics of the flow
behind a bluff body such as the cube.

(a) ε (%) (b) CRN (%)

Figure 10. Contours of: (a) the non-dimensional error between the
CFD total velocity, ut,CFD, and the PIV one, ut,PIV , on plane C, (b) the
non-dimensional continuity residual derived by the discretised conti-
nuity equation, CRN, on plane C. X and Y are non-dimensional coordi-
nates, whereas the thick black line denotes the downstream boundary
of the cube. Flow is from left to right.

The relative pressure field of the measurements on plane
C, with respect to a reference pressure located at the top down-
stream corner of the domain, again different from planes A and
B but chosen as the point where the flow is the least disturbed,
is illustrated in Figure 11a, whereas in Figure 11b a compari-
son between CP and CPexp is presented.

(a) P (Pa) (b) CPexp and CP

Figure 11. (a) Relative pressure contours extracted by the developed
methodology, on plane C, (b) comparison between CPexp and CP, where
the Y-axis corresponds to the non-dimensional distance from the bot-
tom boundary of the domain (Y = 0.91 denotes the upper edge of the
cube), for plane C. Flow is from left to right for (a).

In Figure 11a, a relatively small range of pressure can be
observed, namely about 2 Pa, indicating that the pressure is
generally constant in the wake of the cube, as expected, due
to flow separation. Two lobe-like structures with a pressure
difference equal to the pressure range, are located close to each
other on the downstream boundary of the domain, which are
probably caused by the inadequacy of the Neumann boundary
conditions that are imposed on this area.

Unlike the results shown for plane A and B, the compar-
ison between CPexp (purple points) and CP (green line) reveals
a significant discrepancy between computational results and
measurements. It has to be clarified that the most probable rea-
sons are: (i) the reference pressure is not exactly the same as
the experimental reference one, which was outside the experi-
mental domain available here, (ii) CP is calculated at a distance
of approximately 1 cm and not exactly on the downstream wall
(iii) numerical and experimental errors and (iv) 3D effects.

The mean value of the difference ∆CP =CPexp−CP for ev-
ery measurement point, is found to be equal to ∆CP =−0.3043
while its standard deviation in CP units is equal to 0.0197, re-
sults that correspond to 1.8 Pa and 0.12 Pa respectively (the
dynamic pressure is once again equal to 5.99 Pa). Based on
the aforementioned results, it can be contended that the dis-
crepancy between the two CP profiles has similar properties to
a systematic error/bias, most probably corresponding to a dif-
ference between the experimental and computational reference
pressures.

The blue line, shown in Figure 11b, is produced by adding
∆CP = −0.3043 to the CFD-calculated pressure coefficient.
The measurements almost coincide with the corrected pres-
sure coefficient, with the maximum value of the relative error,
∆CP/CPexp , derived about 7 %.

Generally, the results regarding plane C for the examined
case where the apertures are open, demonstrate a larger, prob-
ably aberrant, velocity correction as well as a higher discrep-
ancy between the experimental and CFD CP profiles, in com-
parison with the results extracted for the case where the apper-
tures are closed (Pallas and Bouris, 2022).

CONCLUSIONS
Two-dimensional time-averaged PIV velocity fields along

with PIV statistics have been integrated in a code based on the
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SIMPLE algorithm, and attempt is made to apply the method-
ology to three different data sets lying on the upstream, down-
stream and roof plane of symmetry, respectively, for the case
of turbulent flow around a surface-mounted cube, with up-
stream and downstream face vertical openings. The extraction
of the respective pressure fields as well as the correction of the
PIV velocity fields in order to satisfy the continuity equation
are undertaken, whereas no model of turbulence is necessary,
since the closure of the equations is accomplished by direct
computation of the Reynolds Stresses, using the PIV statistics.

Profiles of the pressure coefficient near the upstream,
roof and downstream solid boundaries, calculated by the CFD
method, are compared with experimentally derived CP pro-
files, revealing that in most cases, the proposed approach is ca-
pable of producing reliable and physically consistent results.

Although the implementation of the approach to a more
complex case than in Pallas and Bouris (2022) and in three re-
gions of the flow with different inherent physics does prove to
a certain extent its flexibility and universality, several major is-
sues remain, such as the availability of the experimental data,
the PIV temporal and spatial resolution as well as the CFD
spatial resolution, the uncertainties in the data and finally, the
two-dimensionality assumption of the flow.

A prerequisite for the application of the developed ap-
proach, is the existence of PIV measurement data, which is
not always feasible, but even when a PIV experiment can be
carried out, optical access problems (predominant for cases
of complex geometry) as well as limitations linked to the re-
solved PIV length/time scales can deteriorate the quality of
the results. The PIV-resolved length/time scales (and the re-
spective frequencies) do not constitute an important limiting
factor, whenever the spatial PIV and CFD resolution are simi-
lar, since the CFD solution is not expected to resolve sub-PIV
length/time scales.

As seen in the presented results and especially for plane
C, the spatial PIV/CFD resolution is not always adequate to
capture complex physics of the flow in regions of steep gradi-
ents, e.g., the upstream corner or the wake of the cube. This
problem may be attenuated by applying interpolation of the
PIV data to a finer grid and/or by implementing CFD local
grid refinement techniques.

Finally, it should be noted that the violation of the as-
sumption of two-dimensionality of the flow, can degrade the
quality of the extracted results. The SIMPLE algorithm is
based on the solution of a pressure correction equation which
is strongly coupled with the continuity/mass residual through
its source terms. Owing to the non-inclusion of the third ve-
locity component, w, it can be contended that the appearance
of three-dimensional flow structures can jeopardise the cred-
ibility of the the proposed approach, since they could lead to
increased values of the initial PIV continuity residual.

To conclude, the proposed method, in most cases, yielded
reliable and physically consistent results, showing the poten-
tial of performing adequately for different conditions and dif-
ferent intrinsic flow physics. Although several issues remain,
this attempt shows promise as a complementary source of in-
formation for experimental measurements, as a source of cor-
rection for numerical simulations and/or as a possible bench-
mark for numerical model development. More specifically, the
fact that PIV-calculated Reynolds stresses are introduced in the
source terms of the RANS equations, overcomes any assump-
tions inherent in a turbulence model, and possibly leads to
better compliance of the CFD solution to the inherent physics
of the flow, since turbulence models are usually calibrated in
order to be consistent in the prediction of fundamental flows

(Duraisamy et.al., 2019).
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