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ABSTRACT 

A new expression for the scale-space energy density based 
on filtered velocities was proposed to clarify the reason for the 
negative value of the energy density and to better understand 
and predict inhomogeneous turbulent flows. The new 
expression consists of homogeneous and inhomogeneous 
terms; the former is always non-negative whereas the latter can 
be negative because of the turbulence inhomogeneity. DNS 
data of turbulent channel flow was used to examine the two 
terms of the turbulent energy and energy density. It was shown 
that a concave profile of the turbulent energy near the wall 
accounts for the negative value of the energy density very close 
to the wall. 

 
 

INTRODUCTION 
For homogeneous isotropic turbulence, the energy 

spectrum is commonly used to describe the scale dependence 
of turbulent fluctuations. The energy transfer has been studied 
in detail, and several closure theories have been developed. In 
contrast, one-point statistical quantities are mainly employed 
for inhomogeneous turbulence, such as the turbulent kinetic 
energy. The scale dependence of the energy must be important 
for understanding and predicting inhomogeneous turbulent 
flows. 

The velocity field is decomposed into mean and fluctuating 
parts. 

   (1) 
For homogeneous turbulence, the Fourier transform is used to 
describe the scale dependence of the velocity fluctuation as 
follows: 

  (2) 

   (3) 

The velocity fluctuation  is decomposed into Fourier 
modes in the wavenumber space in (2). Moreover, the velocity 
variance  is also decomposed in the wavenumber space in 
(3). As a result, the turbulent kinetic energy  is 
expressed in terms of the energy spectrum as follows: 

   (4) 

   (5) 
The spectrum  can be considered an energy density in the 
wavenumber space and its integral is equal to the kinetic 
energy K. Moreover,  is non-negative because of (3). We 
can obtain a better understanding of turbulence by examining 
the energy transfer in the wavenumber space. 

For inhomogeneous turbulence, the Fourier transform 
cannot be always used because of complex flow domain and 
boundaries. Instead of the energy spectrum in the wavenumber 
space, the second-order structure function  
[  ] in the physical space can be 
used to describe the kinetic energy at the length scale of r. The 
transport equation for the structure function has been examined 
for several inhomogeneous turbulence (Cimarelli et al., 2013; 
Cimarelli et al., 2016; Gatti et al., 2020). However, the 
structure function represents the kinetic energy of eddies with 
sizes equal to or less than r; it is not the energy density in the 
scale space. It is more appropriate to introduce the energy 
density that satisfies (Davidson 2004) 

  (6) 

   (7) 
where the turbulent energy K at a position is decomposed into 
the non-negative energy density . Using the two-point 
velocity correlation, the author proposed an expression for the 
energy density in the scale space (Hamba, 2015; Hamba, 2018). 
The energy density always satisfies (6), but satisfies (7) only 
for homogeneous turbulence. It can be negative for 
inhomogeneous turbulence. 

In this work, we improve an expression for the energy 
density using three filtered velocities (Hamba 2022). The new 
energy density consists of homogeneous and inhomogeneous 
parts. The expression can still be negative for inhomogeneous 
turbulence, but the reason for the negative value can be 
identified in relation to the turbulence inhomogeneity. We 
analyze DNS data of turbulent channel flow to examine the 
homogeneous and inhomogeneous parts of the energy density 
and investigate the reason for its negative value. 
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ENERGY DENSITY IN SCALE SPACE 
For simplicity, we describe the formulation in the case of 

one-dimensional filtering. The three-dimensional filtering is 
described in Hamba (2022). The first filtered velocity is an 
ordinary one and defined as 

   (8) 

   (9) 

Here, we adopt a quantity s with a dimension of the square of 
the length and refer to s as the scale. This filtered velocity 
represents the velocity with a scale equal to or greater than s.  

By differentiating  with respect to s, we can obtain 
a filtered velocity with a scale equal to s. The second filtered 
velocity is defined as 

   (10) 

  (11) 

The first filtered velocity and the original velocity can be 
written as 

   (12) 

The velocity can be decomposed in terms of  in the 
scale space. Moreover, the following relationship is obtained. 

  (13) 

By differentiating  with respect to x, we introduce 
another filtered velocity defined as 

   (14) 

   (15) 

The third filtered velocity  is the first derivative of 
 whereas the second filtered velocity  is the 

second derivative of . 
Using the three filtered velocities, we propose a new 

expression for the energy density in the scale space. The 
variance of the first filtered velocity written as 

   (16) 
represents the kinetic energy of eddies with scales equal to or 
greater than s. By differentiating  with respect to s, we 
can define the energy density , where 

   (17) 

which satisfies 

   (18) 

Using the variance of the third filtered velocity, 
, and the relationship given by (13), 

we can rewrite the energy density as follows 

   (19) 

A similar relationship was also used to investigate the 
stretching of vorticity by the strain rate in Johnson (2020). We 
call the first and second terms on the right-hand side of (19) the 

homogeneous and inhomogeneous parts. For homogeneous 
turbulence, only the homogeneous part remains non-zero; it is 
clearly non-negative because it is the variance . For 
inhomogeneous turbulence, the energy density can be negative 
because of the inhomogeneity of the energy . We can 
quantitatively examine the deviation from the non-negative part 
in the case of inhomogeneous turbulence. 
	
	
ANALYSIS OF CHANNEL FLOW 

To investigate the homogeneous and inhomogeneous parts 
of the energy density, we examine the DNS data of a turbulent 
channel flow. The size of the computational domain is 

, where x, y, and z denote the 
streamwise, wall-normal, and spanwise directions, respectively. 
Physical quantities are nondimensionalized by the friction 
velocity  and channel half width . The Reynolds 
number is set to . 

In this paper, we treat the one-dimensional filtering in the 
wall-normal direction. The first filtered velocity is written as 

   (20) 

The filter function  is basically the same as (9), but it 
should be modified near the wall. We define  as the 
solution of the following equation 

    (21) 

with the boundary condition at the wall at . Considering 
the solenoidal condition for , we adopt the following 
two sets of boundary conditions: 

  for  and ,  for  (22) 

and 

  for  and ,  for  (23) 

The energy density given by (19) is written as 

   (24) 

By integrating each term with respect to s, we can obtain an 
expression for the turbulent energy as 

 (25) 

where the right-hand side consists of the homogeneous, 
inhomogeneous, and residual parts. 

First, we plot instantaneous profiles of the filtered velocity 
to show the effect of the filtering given by (8). Figure 1 shows 
one-dimensional profiles of the velocity  and the 
filtered velocity  as functions of y at  in the 
case of the second boundary condition for . The 
scale s is set to 0.0016 for Fig. 1(b) and 0.016 for Fig. 1(c). The 
scale  corresponds to a filter width  
normalized by the channel half width. It is clearly seen that the 
velocity profile become smoother as the scale increases. 

Hereafter, we examine profiles of averaged quantities. 
Figure 2 shows the profiles of the turbulent energy and its three 
parts given by (25) as functions of y in the case of the first 
boundary condition for . Except for the near-wall 
region, the inhomogeneous part is small and the homogeneous 
part is dominant in Fig. 2(a). However, in Fig. 2(b) where the 
near-wall region is shown, we can see that the inhomogeneous 
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part shows a large negative value. The magnitude of both parts 
is greater than 10 and seems too large compared to the peak 
value of K . 

Figure 3 shows the profiles of the turbulent energy and its 
three parts in the case of the second boundary condition for 

. The inhomogeneous part shows a negative value 
near the wall, but its magnitude is much smaller than that in Fig. 
2. The turbulent kinetic energy is expressed mainly in terms of 
its homogeneous part and is slightly modified by its 
inhomogeneous part near the wall. In this sense, the second set 
of boundary condition given by (23) is more appropriate. 
Hereafter, we will show the results given by this boundary 
condition. The inhomogeneous part involved in (24) is minus 
the second derivative of the velocity variance. This implies that 
the negative value of the inhomogeneous part at  shown 
in Fig. 3(b) is caused by the concave profile of the turbulent 
energy near the wall. 

Figure 4 shows the contours of the pre-multiplied 
homogeneous part of the energy density, , in the 

 plane. The peak is located at  and 
 ( ). The peak location with respect to s 

increases as y increases. The contour plots are very similar to 
those of   given by Hamba (2018). Figure 5 shows the 
profiles of  as functions of s at four y locations. 
The shift of the peak towards large scales is clearly shown. The 
value in the case of  is the largest and this fact 
corresponds to the peak location of the homogeneous part 
shown in Fig. 3(b). 

Figure 6 shows the profiles of the pre-multiplied energy 
density and its two parts given by (24) as functions of s at two 
y locations. In Fig. 6(a) for , the homogeneous part is 
positive whereas the inhomogeneous part shows both positive 
and negative values. Because the inhomogeneous part is not 
very large, the total value is always positive. In contrast, in Fig. 
6(b) for , the inhomogeneous part has a large negative 
value at , and the resulting total value also shows a 
negative value. As discussed before, the large negative value of 
the inhomogeneous part at  is caused by the concave 
profile of the turbulent energy near the wall. Therefore, the 
energy density can be negative in the region very close to the 
wall because of the inhomogeneous effect. 

 
 

CONCLUSIONS 
A new expression for the energy density in the scale space 

was proposed using three filtered velocities. The new 
expression consists of homogeneous and inhomogeneous parts. 
The homogeneous part is always non-negative whereas the 
inhomogeneous part is proportional to the second derivative of 
the velocity variance. DNS data of a turbulent channel flow 
were used to evaluate the homogeneous and inhomogeneous 
parts of the energy density and the turbulent energy. It was 
shown that a concave profile of the filtered-velocity variance at 
the wall accounts for the negative value of the energy density 
in the region very close to the wall. In future work, we will 
examine the energy transfer between different scales using the 
proposed energy density. It would also be interesting to 
formulate a statistical theory using filtered velocities to 
improve the turbulence models. 
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Figure 1. Profiles of velocity  and filtered velocity 

 as a function of y at  in the case of the 
second boundary condition for  (a)  (b)  for  

 (c)  for  
 
 

 

 
Figure 2. Profiles of turbulent energy K and its three parts 
given by (25) in the case of the first boundary condition for 

 (a)  (b)  
 
 

 

 
Figure 3. Profiles of turbulent energy K and its three parts 
given by (25) in the case of the second boundary condition for 

 (a)  (b) . 
 
 

 
Figure 4. Contour plots of pre-multiplied homogeneous part 
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Figure 5. Profiles of pre-multiplied homogeneous part 

 as functions of s. 
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Figure 6. Profiles of pre-multiplied energy density 

 and its two parts given by (24) (a) for  
and (b) for . 
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