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ABSTRACT
A new direct numerical simulation of Poiseuille channel

flow with a frictional Reynolds number of 10,000 was per-
formed using the LISO pseudospectral code. The mean flow
presents a long logarithmic layer ranging from 400 to 2500
wall units, longer than expected. The maximum intensity of
the flow velocity increases with the Reynolds number. The
elusive second maximum of this intensity is also yet to appear.
If it existed, its position would be around y+ ≈ 120, extrap-
olating the friction Reynolds number to around 13500. For
several Reynolds numbers, this slight difference in the near-
wall gradient of the intensity is associated with a scaling fail-
ure of dissipation, confirming this hypothesis. The scaling of
the turbulent users in the middle of the channel is almost per-
fect above 1000 wall units. Finally, the peak pressure intensity
grows with increasing Reynolds number and does not scale in
wall units.

INTRODUCTION
After almost 140 years of the publication of O. Reynolds’s

first work, turbulence is still an open problem. Research of tur-
bulent flows has been dominated by experimental techniques
until the eighties of the last century, where supercomputers
started to be powerful enough to solve the equations of turbu-
lent flows. In fact, Direct Numerical Simulation (DNS) has be-
come one of the main tools in studying wall turbulence. How-
ever, DNSs are extremely expensive in terms of computational
resources. Thus, the most studied configurations have been
turbulent boundary layers and channels. Here we study the
later, where the fluid is confined between two parallel plates
and the flow is driven by pressure.

The friction Reynolds number, defined as Reτ = uτ h/ν , is
the main control parameter in wall bounded turbulence. Here
uτ =

√

τw/ρ is the friction velocity, ν is the kinematic vis-
cosity, ρ is the density, and τw is the friction at the wall. h
is the semi-height of the channel and is equivalent to the ra-
dius in pipes and δ99 in boundary layers. Since the semi-
nal work of Kim, Moin and Moser Kim et al. (1987), the
Reτ has steadily increased from 180 in 1987 to 8000 in 2018
(Kim et al., 1987; Hoyas & Jiménez, 2006; Lozano-Durán &
Jiménez, 2014; Bernardini et al., 2014; Yamamoto & Tsuji,
2018). A simulation reaching the Reτ = 10000 frontier is pre-
sented here. This simulation has been very recently published,
and some more details are given here: Oberlack et al. (2022);

Hoyas et al. (2022).
This friction Reynolds number is less than the largest real-

isation of the flow obtained by experimental means, see Samie
et al. (2018) and discussion inside. In particular, Samie et al.
(2018) reached a value of 20,000 with very good spatial reso-
lution. The main advantage, however, is that DNS allows the
computation of any conceivable quantity over the entire do-
main, including derivatives close to walls. In addition to con-
tributing to discussions on some of the issues that have arisen
over the past few years, with this simulation we are providing
community data that hopefully will help better model turbu-
lence.

In the present article we will restrict ourselves to present
the data and the kinematics of the flow, referring the inter-
ested reader to Oberlack et al. (2022) for scaling laws about the
streamwise mean velocity. This work is organized as follows.
Section two describes the numerical method and the validation
of the data. Section three discusses the one-point statistics of
the flow, including mean flow and intensities. The energy tur-
bulent budgets are discussed in section four. Finally, section
five contains the conclusions of this work.
The database containing the mean flow, intensities, and turbu-
lent budgets can be downloaded from the TUdatalib Repos-
itory of TU Darmstadt at https://doi.org/10.48328/tudatalib-
658

Numerical method
In this work we present the results of a DNS of a pressure-

driven (Poiseuille) channel flow at a nominal Reτ = 10000. Su-
perscript (+) indicates that the quantities have been normalized
by uτ and ν . This simulation has been performed in a com-
putational box of sizes Lx = 2πh, Ly = 2h and Lz = πh. For
Poiseuille flow, Lozano-Durán & Jiménez (2014) noticed that
even relatively small computational boxes of stream- and span-
wise sizes of only 2πh×πh can satisfactorily recover the one-
point statistics of the flow. The streamwise, wall-normal, and
spanwise coordinates are x, y, andz, respectively. The corre-
sponding velocity components are U,V andW or, using index
notation, Ui. Statistically averaged quantities in time, x and z
are denoted by an overbar, U , whereas fluctuating quantities
are denoted by lowercase letters, i. e., U =U +u. Primes are
reserved for intensities, u′ = uu1/2.

The Navier-Stokes equations have been solved using the
LISO code, which has successfully been employed to run some

1

https://doi.org/10.48328/tudatalib-658
https://doi.org/10.48328/tudatalib-658


12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan, July 19–22, 2022

Case Line Reτ Reb Lx Lz ∆x+ ∆z+ Tuτ/h

HJ02 ⋯⋯ 2000 43650 8πh 3πh 12.3 6.1 11

LJ04 4000 98302 2πh πh 12.8 6.4 15

LM05 5200 125000 8πh 3πh 8.2 4.1 7.80

HO10 10000 261000 2πh πh 15.3 7.6 19.8

Table 1: Parameters of the simulations. Reb is the bulk Reynolds number, Reb =Ubh/ν , where Ub is the bulk velocity. ∆
+

x
and ∆

+

z are in terms of dealiased Fourier modes. The last column is the total simulation time in terms of eddy turnovers.

of the largest simulations of turbulence (Hoyas & Jiménez,
2006; Avsarkisov et al., 2014a,b; Kraheberger et al., 2018;
Alcántara-Ávila et al., 2021). Briefly, the code uses the same
strategy than Kim et al. (1987), but using a seven-point com-
pact finite differences in y direction with fourth-order consis-
tency and extended spectral-like resolution (Lele, 1992). The
temporal discretization is a third-order semi-implicit Runge-
Kutta scheme (Spalart et al., 1991). The wall-normal grid
spacing is adjusted to keep the resolution at ∆y = 1.5η , i.e.,
approximately constant in terms of the local isotropic Kol-
mogorov scale η = (ν

3
/ε)

1/4. In wall units, ∆y+ varies from
0.3 at the wall, up to ∆y+ ≃ 12 at the centerline. The resolution
in x and z is similar to the largest simulations of turbulence,
see table 1. A code similar to the one used presently, including
the energy equation, is explained in Lluesma-Rodrı́guez et al.
(2021).

The initial file of this simulation was taken from a smaller
Reynolds number simulation. To accelerate the compilation of
statistics, three initial files were prepared and thus three simu-
lations were run at the same time. In every case, the code was
run until some transition phase had passed and the flow had
adjusted to the new set of parameters. Once the flow was in
a statistically steady state, statistics were compiled. The run-
ning times to compile statistics are shown in terms of eddy-
turnovers in the rightmost column of table 1. The transitions
until the simulations reached a statistically steady state, which
were very time consuming, are not contemplated in this table.

Table 1 also shows the parameters of the simulations HJ02
(Hoyas & Jiménez, 2006), LJ04 (Lozano-Durán & Jiménez,
2014), and LM05 (Lee & Moser, 2015). These simulations
will be used in the paper in the colour code described in the
second column of table 1. As it is said above, this code has
already proved its worth, but to further validate the statistics,
figure 1 shows the error in the momentum equation,

dU
+

dy+
−uv+ = 1−y+. (1)

The difference between both sides of this equation is be-
low 2×10−3, similar to the other tree simulations utilized here.
Thus, it has been considered that enough statistical informa-
tion was obtained.

One point statistics
The mean velocity profile is shown in figure 2a in terms

of the indicator function, Γ = y+∂y+U
+

. This function should
show a plateau if the classical scaling for the logarithmic layer
U
+

= κ
−1 log(y+)+B holds, where κ is the von Kármán con-

stant. Moreover, in Oberlack et al. (2022) it is shown that the

Figure 1: Error in the computation of momentum equa-
tion (1)

profile of U
+

is indeed logarithmic, using the Lie-symmetry
theory applied to turbulence. Furthermore, it this article it is
shown that in the log-region we have

U+1 =
1
κ

ln(y+)+B, (2)

(Un
1 )
+
=Cn (y

+
)

ω(n−1)
−Bn, forn ≥ 2, (3)

Cn =αeβn, Bn = α̃eβ̃n, for n ≥ 2. (4)

where κ , B, Bn, Cn, α , β , α̃ and β̃ are constants that need to
be fitted with experiments. For several of the flows analysed,
ω = 0.10.

For every case, the first local minimum of Γ is reached
around y+ ≈ 70, which more or less coincide with the classic
starting point of the logarithmic layer (Pope, 2000). However,
the indicator function is not flat until y+ ≈ 400, so this could be
a new starting point. The logarithmic layer extends to around
y+ ≈ 2500 or y/h = 0.25, above the usual value of y/h = 0.2.
To obtain the values of κ and B, we have restricted ourselves
to the region where the indicator function is flattest, i.e., from
y+ = 400 to y/h = 0.25 (figure 2a), obtaining κ = 0.394 and
B = 4.61. This value of κ is similar to the experimental one of
Marusic et al. (2013), and only 0.010 and 0.007 units larger
than the one given by Lee & Moser (2015) and Yamamoto &
Tsuji (2018). Abe & Antonia (2016) also obtained this value
in their study of global energy. Studying the finite Reynolds
number effects on the flow, Luchini (2017), and Spalart & Abe
(2021), give a similar value.

It is worth mentioning that some other authors, with dif-
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Figure 2: Lines as in table 1. (a) Indicator function, showing a log layer in the range y+ = 400−2500. (b) Budgets for
Reynolds stresses in wall units. Production ∎, dissipation ⧫, viscous diffusion ∗ , pressure-strain▼, pressure diffusion▲,
turbulent diffusion •.

Figure 3: Lines as in table 1. (a) u′+. Box: dy+u′+ evaluated at the wall. (b) dy+u′+, close to the possible second maximum.
Box: maximum value of dy+u′+

ferent tools, have obtained values above 0.40. McKeon McK-
eon et al. (2004) in high Reynolds numbers involving pipes
got 0.42. More recently, Monkewitz (2021) has developed an
algorithm to model U

+

for very large Reynolds numbers. The
value of κ is similar to the one obtained by us. However, in
Monkewitz (2021) the actual logarithmic profile for Reτ = 105

would start around 103 wall units for a final value κ = 0.42. As
a DNS reaching this Reτ is approximately 3500 times more
costly than the one presented here, this is probably an open
problem for the next decade or more.

The intensity of the streamwise velocity, u′+, is shown in
figure 3a. The well known scaling failure in the buffer layer
is still present (Hoyas & Jiménez, 2006), and the maximum of
the intensity is u′+ = 3.07. About the open question of a possi-
ble second maximum of u′+ the situation is shown in figure 3b.
If it exists, this maximum would be located around y+ ≈ 120.
However, the derivative of u′+ is still not zero. Fitting the data
to a logarithmic grow law, we obtain dyu′+0 = 0.29logReτ −2.7,
and a approximate critical value of Reτ = 13500.

The scaling failure of the dissipation
The budget equation for the component uiu j of the

Reynolds-stress tensor is written as Mansour et al. (1988);

Hoyas & Jiménez (2008)

Bi j ≡Duiu j/Dt = Pi j +εi j +Ti j +Π
s
i j +Π

d
i j +Vi j. (5)

The terms in the right hand side of equation (5) are re-
ferred as production, dissipation, turbulent diffusion, viscous
diffusion, pressure-strain, and pressure-diffusion.

Pi j = −uiuk∂kU j −u juk∂kUi, εi j = −2ν∂kui∂ku j,
Ti j = ∂kuiu juk, Vi j = ν∂kkuiu j

Π
s
i j = p(∂ jui+∂ jui), Π

d
i j = ∂k (puiδ jk + pu jδik),

where δi j is Kronecker’s delta. The splitting of the pressure in
two different terms is not unique, but this one offers more in-
formation in the B12 and B22 terms (Hoyas & Jiménez, 2008).
Finally, in channels Bi j ≡ 0. In the viscous and buffer layers,
budgets should scale in wall units, B+i j =Bi jν/u

3
τ . The B11 bud-

get is shown in figure 3b, using this scale. Except those terms
that are identically zero, all are active. The well-known scal-
ing failure (Hoyas & Jiménez, 2008) of the dissipation at the
wall for B11 is still present. As expected all terms collapse for
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y+ > 10. However, below this more or less arbitrary limit, the
absolute values of ε

+

11 and V+11 increase with the Reynolds num-
ber. This scaling failure can be linked to the growing of the first
maximum of u′+. At the wall (Hoyas & Jiménez, 2008),

V11∣y=0 = ν∂yy u2
∣y=0 = 2ν (∂yu)2∣y=0 = −ε11 (6)

as all other terms vanish. u′+ can be approximated by u′+ =
(buy++cuy+2

+ ...) . Therefore, near the wall, u′+ ≈ buy+, and

V+11 ≈ b2
u. Thus, the reason why this term of the turbulent bud-

get does not scale with the Reynolds number in the wall comes
from the differences in the bu terms. This term represents the
slope of u′+ near the wall. Looking at the box in figure 3a, one
can see that, effectively, the value of du′+/dy+ at the wall does
not collapse, but slightly increase. Apart from our data, there
are evidences that the peak at y+ ≈ 15 keeps growing with re-
spect to Reτ (Samie et al., 2018). Because the position of the
peak is constant in y+, the slope of u′+ has to be higher for
larger Reτ . In other words, as long as the peak of u′+ increases
with Reτ , bu will also increase and V+11 cannot scale at the wall.

Conclusions
To conclude, we have simulated a Poiseuille turbulent

channel flow at a friction Reynolds number of Reτ = 10000.
This simulation was made in a small box of size (2πh,2h,πh),
large enough to accurately compute the statistics of the flow.
The profile of U shows a long log layer, extending from
y+ ≈ 400 to y+ ≈ 2500. The value of the von Kármán constant
is κ = 0.394. The first maximum of the streamwise profile u′+

continues growing, which is the cause of the scaling failure of
the dissipation at the wall. The second maximum of u′+ has
not appeared yet, and it is foreseen to appear at approximately
Reτ = 13500. On the other hand, The turbulent budgets show a
almost perfect scaling in the outer region with B∗i j = yBi j/u

3
τ .
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M.J. & Hoyas, S. 2021 A code for simulating heat trans-
fer in turbulent channel flow. Mathematics 9 (7).
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