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ABSTRACT
Realistic surfaces of flow-related equipment are often hy-

draulically rough due to wear or fouling. Predicting the skin
friction exerted by such rough surfaces is a challenging task
since the topography of these surfaces is inherently irregular
and complex. Recent developments in data-driven methods
and increasing affordability of high-fidelity direct numerical
simulations (DNS) have created new possibilities for estima-
tion of drag on irregular rough surfaces. In the present work we
aim to demonstrate a viable approach to efficiently train a pre-
dictive model for the estimation of drag for irregular roughness
based on its height probability density function (PDF) and the
surface height power spectrum (PS). An active learning (AL)
framework is employed to efficiently navigate the construction
of a training database. Training data is generated by conduct-
ing direct numerical simulations of a flow over artificially gen-
erated rough surfaces in minimal channels in order to minimize
the computational effort. An ensemble neural network (ENN)
model is trained based on the database. The ENN model shows
promising potential in predicting the skin friction as well as es-
timating the epistemic (model) uncertainty. Furthermore, the
model – trained on artificial surfaces – is tested on five realistic
surface scans, showing that a maximum error of 8.7% between
the predicted roughness function ∆U+ and the DNS results is
achieved. Overall, the AL framework shows a great potential
as a basis for future research towards a universal predictive
tool for any arbitrary roughness.

INTRODUCTION
Roughness is encountered in a variety of engineering ap-

plications since many industrial processes inherently include
rough surface conditions. The roughness on solid surfaces in
flow-related applications can enhance the near-wall momen-
tum transfer, thus it also increases the skin friction drag. This
can translate into a significant deterioration of equipment per-
formance. The increase of skin friction is manifested by a
downward shift in the mean velocity profile in respect to a
smooth surface profile at identical friction Reynolds number
Reτ . This downward shift in the logarithmic layer is known as

the (Hama) roughness function ∆U+. Prediction of the rough-
ness function is of key importance for the estimation of drag
force and modeling of turbulent flow over a rough surface.
However, ∆U+ is not known a priori for an arbitrary rough
surface, and for every new roughness topography at different
Reτ , ∆U+ needs to be determined using a laboratory experi-
ment or high-fidelity numerical simulation, both of which are
costly and time consuming. As an alternative, predictive em-
pirical ’roughness correlations’ have been extensively studied
by researchers, a review is provided by Chung et al. (2021).
These correlations predict the roughness function based on sta-
tistical properties of the roughness height distribution. Due
to the complexity of the roughness geometry, these roughness
correlations proposed in the past research have limits in their
generalizability to other types of roughness topographies.

It is understood that a comprehensive database is the fun-
dament of an universally valid roughness predictive model.
Apart from the difficulties in constructing a massive rough-
ness database that contains realistic surfaces in terms of time
consumption and technical difficulties investigating realistic
roughness has its disadvantages because of the lack of flex-
ibility for parametric studies. In contrast, regular roughness
that contains the specific shape of roughness elements e.g.
cubes (Yang et al., 2016), cones (Forooghi et al., 2017), el-
lipsoids (Jouybari et al., 2021), sinusoidal waves (MacDonald
et al., 2016) etc. are frequently used for systematic investiga-
tion of roughness effect in respect to single, or a few, rough-
ness parameter(s). However, regular roughness has its short-
comings in representing roughness that are encountered in re-
alistic applications. Recently, mathematical irregular rough-
ness generation methods have received increasing attention in
this field of study. The mathematically generated irregular
rough surfaces are able to reflect the stochastic nature of real-
istic roughness while their geometrical statistics can be manip-
ulated. Therefore, the generation method proposed by Pérez-
Ràfols & Almqvist (2019) is employed to systematically pro-
duce the rough surfaces that can be regarded as surrogates of
realistic surfaces.

Under the common goal of predicting roughness-induced
drag of an arbitrary roughness based on its geometrical prop-
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erties several empirical roughness correlations have been built
based on different statistical properties of the roughness, for
instance the models based on correlation length Lcorr (Thakkar
et al., 2017), skewness Sk (Flack et al., 2020) and effective
slope ES (Forooghi et al., 2017). As a matter of fact, it is
widely reported in the literature that the skin friction of rough-
ness can be partly determined by a wide range of geomet-
rical statistics. In order to incorporate as much aspects of
roughness statistical properties as possible into the prediction,
multi-variant machine learning approaches have drawn much
attention in the field. Jouybari et al. (2021) applied neural net-
work to predict the equivalent sand-grain size ks based on 17
roughness statistics. Lee et al. (2022) employed transfer learn-
ing method to enhance the performance of the machine learn-
ing model with three empirical roughness correlations, signifi-
cant enhancement of the model is achieved with relative lower
amount of training data.

Recently, Yang et al. (2021) suggested that the flow prop-
erties of an arbitrary roughness can be uniquely determined
by a reduced-order representation of roughness, namely the
roughness PDF and PS. In the present work, a machine learn-
ing framework is employed for the purpose of predicting the
roughness function ∆U+ of homogeneous irregular roughness
at Reτ = 500 based on its PDF and PS. Active learning (AL)
approach is applied to navigate the construction of the training
database with the aim of strengthening the model iteratively in
an efficient manner. In order to quantify the model uncertainty,
ensemble neural network (ENN) is used.

The structure of the paper is as following: in section 2 we
present the methodology. The advantage of AL framework as
well as the performance of ENN are analysed in section 3.1. In
section 3.2 the evaluation of the model is demonstrated with 5
realistic surfaces. Finally in section 3.3 model interpretation is
carried out with sensitivity analysis method.

METHODOLOGY
Active learning (AL)

In the present work, we aim at developing an efficient AL
framework to predict ∆U+ at Reτ = 500 of given surfaces and
quantify the uncertainty for each prediction. For this purpose a
roughness topography repository with systematic variation of
roughness properties is constructed, containing 400 surfaces.
It is prohibitively expensive to conduct DNS investigation for
the entire repository. Therefore, it is important to efficiently
select the representative roughness samples in the repository
with the aim of sparing the computational effort for the rough-
ness with similar properties to the already labeled samples. To
this end, AL is proposed to navigate the selection of the most
relevant samples based on the model confidence, or model un-
certainty (Aggarwal et al., 2014). The workflow of the AL is
illustrated on the left panel of figure 1. Within the present AL
framework, the model is firstly trained by an initial roughness
data set with 20 randomly selected and DNS-annotated sur-
faces, and subsequently enhanced by a small amount of rough-
ness samples (∼ 20) guided by AL.

Ensemble neural network (ENN)
As mentioned in the previous section, the selection of sur-

faces from the repository for DNS simulations is based on the
uncertainty estimation of a ML model. We employ a ENN
to predict ∆U+ values of surfaces and - at the same time -
to estimate the uncertainty of the prediction. The ENN is an
ensemble of 50 individual densely-connected neural networks

(NN) with identical architectures but trained with random ini-
tial weights. Each NN is constructed with one input layer with
64 neurons, two hidden layers with 64 and 128 non-linear neu-
rons with rectified linear unit (ReLU) activations, respectively
and one linear neuron in the output layer. 10% samples in
the database are used for validation while 90% samples are
used for training. Diversity of the NNs is ensured by select-
ing the distribution of the training-validation database inde-
pendently. L2-regularization is applied to the loss function.
Adaptive momentum estimation (Adam) is employed to train
the model. A sketch of the NN is shown on the right panel
of Figure 1. The input vector III of the NN contains the rough-
ness PDF and PS along with 4 additional characteristic fea-
tures of the rough surface, i.e. the roughness peak-to-trough
height kt , the 99% confidence interval of the PDF k99, the nor-
malized largest/ smallest roughness wavelength λ ∗

0 = λ0/k99,
and λ ∗

1 = λ1/k99, respectively. The input vectors that repre-
sent the roughness PDF and PS are obtained by discretizing
the roughness PDF and PS into each 30 values equidistantly
within the height range 0 < k < kt and the wavenumber range
2π/λ1 > 2π/λ > 2π/λ0, respectively. The input elements in III
are normalized with the standard deviation values of each cor-
responding element calculated from the repository. The final
prediction of the ENN is the averaged prediction over all 50
NNs, namely µ∆U+ = ∑

50
i=1 ∆Û+

i /50. Where ∆Û+ represents
the prediction of a single NN, index i indicates the number of
NN. The uncertainty is measured by the standard deviation of

the predictions, i.e. σ∆U+ =
√

∑
50
i=1(∆Û+

i −µ∆U+)2/50.

Minimal channel simulation
The rough surfaces from the repository are investigated

in closed turbulent channel driven by constant pressure gra-
dient with DNS. The immersed boundary method following
Goldstein’s method (Goldstein et al., 1993) is employed. The
Navier-Stokes equation writes

∇ ·u = 0 , (1)

∂u
∂ t

+∇ · (uu) =− 1
ρ

∇p+ν∇
2u− 1

ρ
Pxex + fIBM . (2)

where u = (u,v,w)⊺ is the velocity vector and Px is the mean
pressure gradient in the flow direction added as a constant and
uniform source term to the momentum equation to drive the
flow in the channel. Here p, ex, ρ , ν and fIBM are pres-
sure fluctuation, streamwise basis vector, density, kinematic
viscosity and external body force term due to IBM, respec-
tively. Periodic boundary conditions are applied in the stream-
wise and spanwise directions. No-slip boundary condition is
applied on the rough walls. The friction Reynolds number
is defined as Reτ = uτ (H− kmd)/ν , where uτ =

√
τw/ρ and

τw = −Px · (H− kmd) are the friction velocity and wall shear
stress, respectively. Melt-down height denoted by kmd is the
mean roughness height measured from the deepest trough. In
the present work, simulations are performed at Reτ = 500.

Due to the unfavorable computational costs for DNS, the
concept of minimal channel simulations (MacDonald et al.,
2016) is applied. The minimal channel size Lx × Ly × Lz =
3H×2H×1H is selected to accommodate both near-wall tur-
bulence and roughness structures. Where H is the channel half
height. In order to resolve the finest roughness structures, a
resolution of 576×401×192 voxels is selected, which trans-
lates to the wall-parallel grid size ∆+ = 2.6. With the present
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Figure 1: Left: schematic of the AL-framework. Right: illustration of the NN architecture, where input vector contains
normalized and discretized roughness PS, PDF and 4 roughness properties. λ ∗ = λ/k99 indicates normalized wavelength.
Note, that layers are fully connected.

mesh size, the smallest roughness structures with wavelength
λ1 are resolved by more than 7 grid points in each wall parallel
direction. In wall-normal directions, consine stretching mesh
is adopted for the Chebychev discretization. A vertical cell
number of 401 is selected. The mesh independence is tested.
An exemplary instantaneous velocity field at an arbitrary z-
location is shown in Figure 2.

Roughness generation
Artificial irregular rough surfaces are generated through

a mathematical roughness generation method where the PS
and PDF of the roughness can be prescribed (Pérez-Ràfols &
Almqvist, 2019). PDF and PS in the repository are set in a ran-
dom but controlled form to imitate the realistic distribution of
PDF and PS. Weibull, bimodal as well as Gaussian distribution
PDF are selected randomly. The Weibull distribution writes:

f (k) = Kβ
Kk(K−1)e−(βk)K

. (3)

where the shape parameters K and β can be randomly pre-
scribed to adjust the shape of the PDF profile. k represents the
local roughness height. The Bimodal distribution is obtained
by generating two Gaussian sequences with random expecta-
tion µ and standard deviation σ and take the point-wise mini-
mum. The Bimodal roughness height distribution as a function
of wall-parallel coordinates (x,z) writes:

k(x,z) = min{Φ0,1(x,z),Φµ,σ (x,z)} . (4)

The roughness height is selected to be at the level of kt ≈ 0.1H.
Random values of the roll-off length Lr (Jacobs et al.,

2017) as well as the power-law decline rate θPS (Lyashenko
et al., 2013) are prescribed for the modelling of roughness
PS. Random perturbations are added to the PS. The upper as
well as lower bound of the roughness wavelength are set to
λ0 = 0.8H and λ1 = 0.04H, respectively. Eventually, by ran-
domly tuning the shape parameters of the roughness PDF and

PS a repository with 400 rough surfaces is generated. The
overview of the randomly prescribed PSs and PDFs in the
repository along with the realistic PSs and PDFs are shown in
Figure 3(a,b). Exemplary surface realizations in the repository
are shown in Figure 4.

Sensitivity analysis
In recent years, growing number of attempts have been

conducted with the aim to interpret the predictions of neural
networks. One of the most frequently used model explanation
methods is the sensitivity analysis (SA). The SA approach at-
tempts to quantify the importance of each input feature. The
SA is the Jacobian matrix of the NN output ∆Û+ in respect to
the input elements, which writes:

S j =
1
50

50

∑
i=1

〈∣∣∣∣∣∂∆Û+
i

∂ I j

∣∣∣∣∣
〉

. (5)

Where S j is the sensitivity of the input element I j, the subscript
j represents the j-th component of the input vector III. The
symbol

〈
·
〉

is the averaging operation over all samples in the
training data set. The derivative ∂∆Û+/∂ I j is calculated using
an automatic differentiation method.

RESULTS
Evaluation of the AL framework

According to the AL workflow, 20 randomly selected
rough surfaces are represented by the red lines in figure 3. The
20 least confident samples are marked with green lines in the
figure. After one round of AL, 40 samples in total are included
into the database for training the ENN. The relative similarity
of the samples in terms of PS and PDF can be observed in the
figure 3. It can be seen that the model tends to explore the ex-
isting sample parameter space as these newly included samples
exhibit significant dissimilarity in terms of the PS and PDF.
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Figure 2: Instantaneous streamwise velocity over simulated rough surface. Contour indicates the mean velocity.
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Figure 3: PS (a) and PDF (b) of roughness samples in the roughness pool. Realistic surface scans are colored blue.
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Figure 4: Exemplary artificial rough surface patches

In order to evaluate the performance of the ENN, multi-
ple samples from the repository at different uncertainty lev-
els are grouped (see Figure 5). The high uncertainty group
contains the 20 samples with highest uncertainty, the low
uncertainty group contains samples whose σ∆U+ < 0.2, the
mid uncertainty group contains 20 randomly selected samples
in the remaining repository. The averaged prediction error
Err = (∆U+

DNS − µ∆U+)/∆U+
DNS as well as the averaged un-

certainty σ∆U+ are compared with the initial model in the fig-
ure. A clear correlation between the error and its estimated
uncertainty can be observed, i.e. high uncertainty corresponds
to high prediction error. For the most confident sample group
in the testing set with σ∆U+ < 0.2, a mean error of 4.3% is
achieved. Furthermore, the efficiency of the AL is illustrated

0 10 20 30

high{
mid{
low{

σ̄∆U+=0.55
σ̄∆U+=0.47
σ̄∆U+=0.37

σ̄∆U+=0.29
σ̄∆U+=0.17

σ̄∆U+=0.12

average error %

initial model
single AL loop

samples with

uncertainty

Figure 5: Reduction of average prediction error and un-
certainty for three groups of samples after one AL itera-
tion. Here overbar represents averaging process over the
samples in each uncertainty level.

when comparing both uncertainty drop as well as the error
drop from the initial model. We observe a significant reduc-
tion in error of 9 percentage points for the high uncertainty
group. It can be seen that at higher uncertainty level more sig-
nificant improvement of prediction accuracy and reduction in
uncertainty is achieved. A possible explanation is that a clus-
ter of least confident roughness properties is DNS-annotated
and included to the model via AL. This leads to a significant
decrease of the uncertainty for the samples that are similar to
these newly incorporated roughness. Thus, it is expected that
within a few AL iterations, the prediction error level converges
to an acceptable level for all considered topographies in the
repository.
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Realistic surface prediction
The applicability of the model is evaluated with realis-

tic rough surfaces. The realistic surface scans are labeled as
Sandpaper, ICE 1∼3 (Velandia & Bansmer, 2019) and IC sur-
face (Forooghi et al., 2018), which originate from sandpaper,
ice accretion on simplified aero-engine nacelle and deposit in
internal combustion engines respectively. The PS is obtained
by applying radial averaging about the origin of the frequency
space (Jacobs et al., 2017) i.e. (qx,qz) = (0,0), where qx and
qz are the wavenumber in wall-parallel x and z directions, re-
spectively. The prediction error as well as the uncertainty re-
garding each realistic surface are listed in the table 1. Overall,
a mean error of 3.2% among all realistic surfaces is achieved.
While the prediction error as well as the uncertainty for all
other roughness are relatively low, the model seems to be less
confident with the surface IC. As observed from Figure 3, this
uncertainty might be caused by the noncompliant shape of the
PS for the IC surface. Therefore, given the satisfactory perfor-
mance of the AL framework, it is expected that an extended
roughness repository will yield an improved predictive model.

Table 1: prediction error and uncertainty for five realistic
surfaces

Error [%] σ∆U+ [-]
Sandpaper 1.9 0.51

ICE1 4.2 0.42
ICE2 3.9 0.26
ICE3 4.0 0.49

IC 2.0 0.60
Average 3.2 0.46

Sensitivity analysis
The sensitivity vector of the roughness characteristic

statistics SSSst, PDF SSSPDF and PS SSSPS are separately shown in
Figure 6 (a) to (c), respectively. From figure 6(a) it can be seen
that the roughness height statistics, namely k99 and kt show
high sensitivity for the prediction. This is due to the fact that
these values serve as the indications of the physical scale, re-
minding that the height range for IIIPDF is scaled with the inputs
kt . A larger roughness height translates to higher skin fric-
tion due to the increased effective slope and therefore a higher
∆U+ (Chan et al., 2015). Lower sensitivity is observed for the
wavelength inputs λ ∗

0 and λ ∗
1 . This may indicate that extreme

large and small roughness wavelengths will not dramatically
alter the roughness induced drag (Yang et al., 2021).

As can be seen from the figure 6, asymmetric distribu-
tion of SSSPDF indicates that the PDF input elements that locate
around and below the median height show higher sensitivity
for the model output. In contrast, the height distribution near
the roughness peaks demonstrates lower sensitivity. This indi-
cates that the neural networks consider the PDF values close
to the roughness troughs to be more important relative to the
ones at the peaks for the prediction of surface drag. The de-
gree of asymmetry of the PDF curve is usually represented
by the third central moment of the PDF, namely the skew-
ness Sk =

∫
S(k−kmd)

3dS/k3
rms. The sensitivity analysis of the

model in figure 6(b) may support the previous observations re-
garding roughness skewness, e.g. Jelly & Busse (2018); Flack
(2018), that a positively skewed roughness with Sk > 0 or

peak-dominated roughness is mapped to a greater ∆U+ value,
while a negatively skewed roughness or pit-dominated rough-
ness translates into a slightly lower value of the velocity retar-
dation.

In figure 6 (c), SSSPS is plotted as a function of λ+ with log-
arithmic scaling. The coherence function between the local-
ized surface force and the roughness structure is investigated
by Yang et al. (2021). It is reported that a certain range of
the roughness wavelengths show considerable correlation to
the local streamwise drag force due to the roughness shelter-
ing effect. Beyond this certain wavelength the coherence starts
dropping. This critical roughness wavelength, according to the
investigation on 12 different types of roughness at Reτ = 500,
locates in the range of 150 < λ+ < 300. To qualitatively illus-
trate the link of this specific length scale with the present re-
search on global drag, the range is added with vertical dashed
lines to the figure. It can be seen from the plot that the sen-
sitivity of the model reaches the highest value within the area
between the dashed lines. This observation may suggest that
the model interprets the PS values at this wavelength range
as being dominant for the global drag of the surface. At the
same time a region with lower sensitivity is observed at smaller
wavelengths. This is supported by the decreasing coherence of
local surface force towards smaller wavelengths (Yang et al.,
2021).

CONCLUSION
A predictive model based on combination of ENN and AL

approach for characterizing the hydrodynamic properties of
homogeneous irregular roughness is presented in the present
work. The uncertainty of the prediction, which is measured
by the standard deviation of the ENN outputs, is shown to be
a proper quantity for estimation of prediction error level of
the model. The results show that with 20 selected roughness
samples by the AL framework, a significant decrease of er-
ror of 9 percentage points is observed for the group of rough-
ness samples with the highest uncertainty. The performance
of the model is examined on artificial roughness and realis-
tic surfaces. In both cases, very good agreement between the
prediction of the ENN and DNS results is observed. The max-
imum prediction error of the model for the 5 realistic surfaces
is 4.2%, while the mean error is 3.2%. The result of presented
study confirm the potential of the AL approach for prediction
of the hydrodynamic roughness properties. The effects of ad-
ditional AL-loops on the model performance will be investi-
gated in future work and reported in the conference presenta-
tion.
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