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ABSTRACT
The life-cycle of turbulent kinetic energy (TKE) in the

canonical Rayleigh-Bénard flows is investigated. The spec-
tral densities of terms in the TKE budget equation are com-
puted with direct numerical simulations (DNSs) at Rayleigh
numbers, Ra, up to 4×108. The result exhibits that both pro-
duction and dissipations are most significant at the center be-
tween two planes. Small-scale motions are dominant for dissi-
pation, while the non-negligible amount of TKE is dissipated
by large-scale motions in the near-wall region. On the other
hand, large-scale motions are dominant for the production of
TKE, but small-scale motions also contribute to the produc-
tion of TKE. It suggests that the traditional energy cascade
model, which describes the energy transfer from large-scale
to small-scale, has a significant role in the life-cycle of TKE.
Furthermore, the cascade process from large-scale motion to
small-scale motion involves transports by nonlinear mecha-
nisms, such as turbulence and pressure-velocity correlations.
The length-scale of the wall-normal transport mechanism in
the overlap region grows linearly with wall-normal distances,
and such linear growth regions increase with Ra.

INTRODUCTION
The super-structure or very large-scale motions (VLSMs)

of turbulent flows are observed in various types of wall-
bounded turbulence. Such large-scale motions are stronger
in boundary-driven wall-bounded turbulence than in pressure-
gradient-driven wall-bounded turbulences (Lee & Moser,
2015; Pandey et al., 2018; Lee & Moser, 2018). Rayleigh-
Bénard convective flow is another boundary condition driven
flow with VLSMs (Stevens et al., 2018; Krug et al., 2020;
Green et al., 2020; Blass et al., 2021). The large-scale motions
(LSMs) of Rayleigh-Bénard convective flows are important in
various engineering and scientific problems, e.g., atmospheric
flows, boiling devices, etc., since they govern the macroscopic
transport of mass and turbulent kinetic energies (Ahlers et al.,
2009).

Recently, some properties of the large-scale motions in
Rayleigh-Bénard convective flows have been revealed by sev-
eral DNS studies. The TKE spectral densities at different
Ra have peaks at k = 1 where k is the circular wavenumber
(Stevens et al., 2018), and the size of large-scale motions grow
with Ra (Krug et al., 2020). Krug et al. also reported that
the size of large-scale structures in the temperature field is dif-
ferent from the size of large-scale motions in vertical veloc-
ity fields, and the difference is strongly connected to the pro-

duction mechanism of vertical velocity fluctuations. Yet, the
understanding of the life-cycle of large-scale motions is still
incomplete. The objective of the current work is to study the
life-cycle of TKE in Rayleigh-Bénard convective flows.

In this work, we investigate the terms in the TKE budget
equation in terms of length-scale and wall-normal locations
to understand the life-cycle of TKE in Rayleigh-Bénard con-
vection problems at different Ras. Among numerous earlier
works in this context, we highlight a few works. (Deardorff &
Willis, 1967) performed TKE budget analysis with the flows
up to Ra = 2.5×106. Kerr (2001) studied the effect of aspect
ratio on the TKE dissipation. More recently, Krug et al. (2020)
performed the spectral analysis on the production of TKE and
revealed the importance of LSMs in Rayleigh-Bénard convec-
tion at high Ra. Separately, Lee & Moser (2019) performed
spectral analysis of the budget equations of velocity variances
with DNS of channel flow at high Re. The same spectral analy-
sis technique is used for this study and summarized in the next
section.

METHOD
DNSs of the incompressible Rayleigh-Bénard convection

are performed for this study. We solve the normalized govern-
ing equations for the incompressible Rayleigh-Bénard convec-
tion. Those are
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where Pr and Ra are Prandtl number and Rayleigh number, re-
spectively. Also, ui, p, θ and δi j are the velocity components,
pressure, normalized temperature and Kronecker’s delta, re-
spectively. x1 and x2 are homogeneous directions, and x3 is
the wall-normal direction. No-slip and no-penetration condi-
tions for velocity fields are applied at top and bottom walls.
Boundary conditions for normalized temperatures are

θx3=0 =
1
2
, θx3=h =−1

2
(2)
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Case Ra L/H N∥ N⊥ Nu Re∥ Re⊥ ReT δθ

1E5 1×105 10π 512 96 4.34 55.6 40.1 68.6 1.152×10−1

6E6 6×106 5π 768 256 13.62 425.3 299.4 520.1 3.672×10−2

4E8 4×108 5π 2048 512 46.37 3141.7 1962.4 3704.3 1.078×10−2

Table 1. Simulation parameters. L: simulation domain size in the homogeneous directions, H: distance between walls, N∥: number
of grid points in spectral domain, N⊥: number of collocation points in wall-normal direction, Re∥: horizontal Reynolds number, Re⊥:
wall-normal Reynolds number, ReT : total Reynolds number, δθ : thermal boundary layer thickness

where h is the distance between two walls. We use
the velocity-vorticity formulation from Kim et al. (1987).
Spectral-Galerkin method and seventh-order basis spline-
collocation method is used for derivatives in homogeneous and
the wall-normal directions, respectively. Orszag’s 3/2 rules are
applied with zero padding to remove the aliasing for comput-
ing quadratic products (Orszag, 1971). The low-storage third
order Runge-Kutta method is used for the time integration.
Modified in-house simulation code, which has been used for
Lee & Moser (2015, 2018), is used for simulations. Consult
Lee et al. (2013, 2014) for details of the simulation code im-
plementations.

We simulate three cases at different Ras with fixed Pr,
Pr = 1. The Nusselt number, Nu and thermal boundary layer
thickness, δθ , of three cases are in table 1. The values in ta-
ble 1 agrees values from Krug et al. (2020) within statistical
uncertainties.

The two-point correlation function corresponding to the
turbulent kinetic energy (TKE, K = ⟨uiui⟩/2) is defined with
quantities separated in homogeneous directions, r, e.g. ũi =
ui(x+ r) where x = (x1,x2,x3) and r = (r1,r2,0).

2RK(r1,r2,x3) = ⟨u′iũ′i⟩ (3)

where ⟨·⟩ denotes the averaging in time and homogeneous di-
rections. With some mathematical manipulations, the budget
equation of RK is obtained as follows.
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The Fourier transforms of terms in (4) with respect to the
separation distances provide spectral densities of terms in the
TKE budget equation.

∂EK

∂ t
= EP +E∥

T +E⊥
T +EΠ +ED −Eε (5)

The integration of terms in (5) over k1 and k2 are the terms in
the TKE budget equations (Deardorff & Willis, 1967).

∂K
∂ t

= P+T +Π+D− ε (6)

where P, T , Π, D and ε are production, wall-normal transport
by turbulence, wall-normal transport by pressure-velocity in-
teraction, wall-normal transport by viscosity and dissipation,
respectively. Note that the integration of E∥

T over k1 and k2 is
zero.

lim
r1→0
r2→0

R
∥
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∫
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−∞

∫
∞
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E∥
T dk1dk2 = 0, ∀x3 (7)

Therefore, we interpret E∥
T as the term for inter-scale transfer

at any fixed wall-normal distance, and this term is not shown in
the TKE budget equation, eq (6). Also, both T and Π are wall-
normal transport terms with nonlinear interaction of velocity
components, while D is the linear wall-normal transport terms.
Note that the pressure field in incompressible flows is the result
of nonlinear interactions of velocity components to satisfy the
divergence-free condition. Therefore, we combine T and Π as
follows.

N = T +Π (8)

and

EN = E⊥
T +EΠ (9)
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Figure 1. One-dimensional profile of turbulent kinetic en-
ergy (TKE)

Note that integration of EN or ED over x3 at any wavenumber
is zero.

∫ h/2

0
EN dx3 =

∫ h/2

0
ED dx3 = 0, ∀(k1,k2) (10)

Finally,

∂EK

∂ t
= EP +E∥

T +EN +ED −Eε (11)

RESULT
In this section, the profile and spectral density of TKE are

discussed. Then, its budget terms are discussed in the order of
production, dissipation, linear wall-normal transport, nonlin-
ear wall-normal transport, and inter-scale transfer.

The one-dimensional profile of TKE is shown in the fig-
ure 1. Locations of TKE peaks increase with Ra, while the val-
ues of TKE peaks decrease with Ra. Also, the increasing rate
of TKE at the near-wall region exhibit some Ra dependencies.
Corresponding one-dimensional spectral densities of TKE are
shown in the figure 2. Note that figures with spectral densities
are represented as functions of k and x3/δθ . k is premultiplied
to all spectral densities to compensate for the log scales in k
domains. The premultiplied TKE spectra shows strong peak
at x3/δθ = 1 and λ/δθ = 40 (λ/h ≈ 4.5) at Ra = 1× 105.
Interestingly, LSMs at Ra = 6×106show bimodal peaks, and
the peaks show scale separations as Ra increases. It is possi-
ble that this observation is an artifact of arbitrary bin size to
obtain the spectral density in k with ∆k = 0.5. There is only
one more data point between two peaks at Ra = 6× 106, but
there are two data points between two peaks at Ra = 4×108.
Nonetheless, the data confirms that the length-scale of super-
structure rolls grows with Ra, which is consistent with (Pandey
et al., 2018). Additional simulation results with much bigger
simulation domains at higher Ra are necessary to verify this
observation, but the costs of such simulations are prohibitively
expensive.

One-dimensional profiles of production and dissipation of
TKE in figure 3 show that most of the produced TKE get dissi-
pated at the same wall-normal locations, and a small portion of
TKE which is not dissipated in the outer region is dissipated at
the near-wall region, x3/δθ < 1. Here, x3/δθ is also premulti-
plied to the budget terms to compensate the log-scale in x3/δθ

similar to k-premultiplied spectral density of TKE. The imbal-
ance between production and dissipation is more vivid in the
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Figure 2. k-Premultiplied spectral densities of TKE
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Figure 3. One-dimensional profile of TKE production (PK)
and dissipation (εK)

spectral density of those. The spectral densities of production
have peaks at the middle point between walls, and correspond-
ing length-scales of peaks increase with Ra even with outer
scaling, λ/h. Similarly, the spectral densities of dissipation
have peaks at the middle point between walls. However, the
length-scale of dominant dissipation is λ/δθ = 7−8 and it is
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Figure 4. k- and x3-Premultiplied spectral density of PK

almost invariant to Ra. Interestingly, a small amount is dissi-
pated at the near-wall region, and their length-scale is consis-
tent with the large-scale structure of production. The differ-
ent spectral behaviors of production and dissipation imply that
the roles of wall-normal transport mechanisms and inter-scale
transfer are important in the life-cycle of TKE.

Figure 6 shows that the non-linear wall-normal mecha-
nism transports TKE from the outer region to the near-wall re-
gion. Then, the linear wall-normal mechanism transports TKE
further to the wall. However, the spectral behaviors of wall-
normal transport mechanisms are more complex. The observa-
tion with one-dimensional profiles still holds with large-scale
motions. (Figure 7) When the length scale gets smaller, the
nonlinear wall-normal mechanism also transports some TKE
away from the wall. Also, the length scale of the donor re-
gion in the nonlinear mechanism linearly increases with wall-
normal distance, λ ∼ x3, and this linear growth is vivid when
Ra increases. There is a small region where the linear mecha-
nism also transports TKE away from the wall (Figure 8). This
behavior is only shown in the region x3/δθ > 1, and the magni-
tude is negligible. Generally, the linear mechanism transports
TKE, which is transported from the outer region by the non-
linear mechanism, to the near-wall region in all length scales.

The spectral behavior of inter-scale TKE transfer is shown
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Figure 5. k- and x3-Premultiplied spectral density of εK

in figure 9. At Ra = 1×105, the strong donor region is where
the production spectra show the peak. A small inverse energy
cascade is observed in the near-wall region at Ra = 1× 105,
but the magnitude of the inverse TKE cascade is small. Also,
the inverse energy cascade is not observed at higher Ra flows.
The inter-scale transfer mechanism in the outer region, say
x3/h > 0.1, shows different behavior from the near-wall re-
gion. The donor region has only one peak at Ra = 1× 105.
However, two peaks are observed in the donor region at outer
flow in higher Ra flows, while the recipient region has a single
peak in all flows. Among the peaks in the donor region at high
Ra flows, the peak with larger-scale is at the same length-scale
where the production mechanism has peaked. However, the
peaks at the intermediate length scale are at different length
scales where the production spectra have peaks. Instead, the
TKE transferred from the intermediate length scale is from the
region closer to the wall. The TKE produced at the large-scale
motion at the middle point between walls transported toward
walls, say x3/h < 0.1 by the nonlinear wall-normal transport
mechanism. Then, the inter-scale mechanism transfers the en-
ergy from the large-scale to the intermediate length scale. Fi-
nally, the nonlinear wall-normal mechanism transports TKE
toward the middle point between walls at a given length scale.
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Figure 6. One-dimensional profile of nonlinear wall-normal
transport of TKE (NK), and linear wall-normal transport of
TKE (DK).
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Figure 7. k- and x3-Premultiplied spectral density of NK

CONCLUSION
In this work, we apply spectral analysis to the terms in the

TKE transport equation. The production and dissipation are
mostly concentrated at the middle point between walls. How-
ever, their dominant length scales are different. The inter-scale
transfer mechanism is mostly responsible for such scale sepa-
ration between production and dissipation. In the cascade pro-
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Figure 8. k- and x3-Premultiplied spectral density of DK

cess of TKE from the large-scale to the small-scale, some TKE
gets transported toward walls and then transported away from
the wall.

In the early part of this work, we speculate the existence
of bi-modal spectral peaks of TKE at high Ra flows, but it is
unable to verify it because it could be an artifact of a small sim-
ulation domain. Even though it is at the different wall-normal
locations, the inter-scale transfer also shows the bimodal peaks
in the donor region at high Ra flows. We speculate that these
two bimodal behavior at high Ra flows is connected, but, again,
we may need to have simulation results with a larger simula-
tion domain and perhaps higher Ra flows.

There are several future works. First, we need a better
scaling parameter than δθ and h. δθ successfully describes the
scaling of dissipation at the middle point between walls. Other
than that, we are unable to find any invariant scaling with δθ

in flows at different Ras even in the near-wall region. Second,
this work is limited to the TKE, but each component of TKE
should be studied. Especially, the wall-normal velocity com-
ponent is the only one with a non-zero production mechanism.
Therefore, inter-component energy transfer should have an im-
portant role in the life-cycle of TKE. Third, we can apply the
same analysis techniques to the temperature fluctuations and
velocity-temperature correlations. The velocity-temperature
correlation is particularly important because it is a production
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Figure 9. k- and x3-Premultiplied spectral density of T ∥
K

mechanism of TKE. Yet, the analysis of velocity-temperature
correlation is challenging because it requires studies not only
on the magnitude but also on the phase in the spectral densities
of budget terms. Finally, we limited our simulation cases with
unity Pr in this work. The effect of Pr must be investigated.

ACKNOWLEDGEMENT
This research used resources of the Argonne Leadership

Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357.

REFERENCES
Ahlers, Guenter, Grossmann, Siegfried & Lohse, Detlef

2009 Heat transfer and large scale dynamics in turbulent

Rayleigh-Bénard convection. Reviews of Modern Physics
81 (2), 503–537.

Blass, Alexander, Verzicco, Roberto, Lohse, Detlef, Stevens,
Richard J.A.M. & Krug, Dominik 2021 Flow organization
in laterally unconfined Rayleigh-Bénard turbulence. Jour-
nal of Fluid Mechanics 906, A26.

Deardorff, J. W. & Willis, G. E. 1967 Investigation of turbu-
lent thermal convection between horizontal plates. Journal
of Fluid Mechanics 28 (4), 675–704.

Green, Gerrit, Vlaykov, Dimitar G, Mellado, Juan Pedro &
Wilczek, Michael 2020 Resolved energy budget of super-
structures in Rayleigh–Bénard convection. Journal of Fluid
Mechanics 887, A21.

Kerr, R. M. 2001 Energy Budget in Rayleigh-Bénard Convec-
tion. Physical Review Letters 87 (24), 244502.

Kim, John, Moin, Parviz & Moser, Robert 1987 Turbulence
statistics in fully developed channel flow at low reynolds
number. Journal of Fluid Mechanics 177, 133–166.

Krug, Dominik, Lohse, Detlef & Stevens, Richard J. A. M.
2020 Coherence of temperature and velocity superstruc-
tures in turbulent rayleigh-bénard flow. Journal of Fluid
Mechanics 887, A2.

Lee, Myoungkyu, Malaya, Nicholas & Moser, Robert D. 2013
Petascale direct numerical simulation of turbulent channel
flow on up to 786k cores. In SC13, the International Confer-
ence for High Performance Computing, Networking, Stor-
age and Analysis, pp. 1–11.

Lee, Myoungkyu & Moser, Robert D. 2015 Direct numeri-
cal simulation of turbulent channel flow up to Reτ ≈ 5200.
Journal of Fluid Mechanics 774, 395–415.

Lee, Myoungkyu & Moser, Robert D. 2018 Extreme-scale mo-
tions in turbulent plane couette flows. Journal of Fluid Me-
chanics 842, 128–145.

Lee, Myoungkyu & Moser, Robert D. 2019 Spectral analysis
of the budget equation in turbulent channel flows at high
reynolds number. Journal of Fluid Mechanics 860, 886–
938.

Lee, Myoungkyu, Ulerich, Rhys, Malaya, Nicholas & Moser,
Robert D. 2014 Experiences from leadership computing in
simulations of turbulent fluid flows. Computing in Science
Engineering 16 (5), 24–31.

Orszag, Steven A. 1971 On the elimination of aliasing in finite-
difference schemes by filtering high-wavenumber compo-
nents. Journal of the Atmospheric Sciences 28, 1074.

Pandey, Ambrish, Scheel, Janet D. & Schumacher, Jörg 2018
Turbulent superstructures in rayleigh-bénard convection.
Nature Communications 9 (1), 1–11.

Stevens, Richard J A M, Blass, Alexander, Zhu, Xiaojue, Verz-
icco, Roberto & Lohse, Detlef 2018 Turbulent thermal su-
perstructures in Rayleigh-Bénard convection. Physical Re-
view Fluids 3 (4), 041501(R).

6


