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ABSTRACT

A growing number of studies suggest that the generation
of wall-shear fluctuations is actively linked with the attached
eddies populating the logarithmic region. In the present study,
we investigate the statistical properties of the streamwise wall-
shear fluctuations (7}) generated by attached eddies in a turbu-
lent channel flow at Re; ~ 2000. To this end, the superposi-
tion components of T}, which are correlated with logarithmic
motions are identified by adopting an inner-outer predictive
model. The momentum generation functions carried by them
are calculated and compared with the scaling law predicted by
the attached-eddy model. Our results further verify that the
generation of 7, by attached eddies approximately follows an
additive process.

INTRODUCTION

Wall-shear stress fluctuation is a crucial physical quantity
in wall-bounded turbulence, as it is of importance for noise
radiation, structural vibration, drag generation, and wall heat
transfer, among others (Diaz-Daniel et al., 2017; Cheng et al.,
2020). In the past two decades, ample evidence has shown that
the root mean squared value of streamwise wall-shear stress
fluctuations (T)’(.’,ms) is sensitive to the flow Reynolds number
(Abe et al., 2004; Schlatter & Orlii, 2010; Yang & Lozano-
Duran, 2017; Guerrero et al., 2020). It indicates that large-
scale energy-containing eddies populating the logarithmic and
outer regions in high-Reynolds-number wall turbulence have
non-negligible influences on the near-wall turbulence dynam-
ics, and thus the wall friction (de Giovanetti et al., 2016; Li
etal.,2019).

Till now, several models have been proposed on the orga-
nization of motions in logarithmic and outer regions and their
interactions with the near-wall dynamics. Marusic et al. (2010)
have established that superposition and modulation are the two
basic mechanisms that large-scale motions (LSM) and very-

large-scale motions (VLSM) exert influences on the near-wall
turbulence. The former refers to the footprints of LSMs and
VLSMs on the near-wall turbulence, while the latter indicates
the intensity amplification or attenuation of near-wall small-
scale turbulence by the outer motions. Mathis ez al. (2013)
extended the model to interpret the generation of wall-shear
stress fluctuations in high-Reynolds number flows. They em-
phasized that superposition and modulation are still two essen-
tial factors. This inner-outer interaction model (IOIM) has also
been successfully developed to predict the near-wall velocity
fluctuations with data inputs from the log layer (Marusic et al.,
2010; Baars et al., 2016; Wang et al., 2021).

On the other hand, the most elegant conceptual model de-
scribing these energy-containing motions is the attached-eddy
model (Townsend, 1976). It hypothesizes that the logarith-
mic region is occupied by an array of randomly-distributed
and self-similar energy-containing motions (or eddies) with
their roots attached to the near-wall region (see Fig. 1). Dur-
ing the recent decades, a growing body of evidence that sup-
ports the attached-eddy hypothesis has emerged rapidly, e.g.,
Hwang (2015), Hwang & Sung (2018), Hwang et al. (2020),
to name a few. The reader is referred to a recent review work
by Marusic & Monty (2019) for more details. Throughout
the paper, the terms ‘eddy’ and ‘motion’ are exchangeable.
It should be noted that the terms of ‘wall-attached motions’
and ‘wall-attached eddies’ used in the present study do not
only refer to the self-similar eddies in the logarithmic region,
but also the very-large-scale motions (VLSMs) or superstruc-
tures, as some recent studies have shown that VLSMs are also
wall-attached, despite that their physical characteristics do not
match the attached-eddy model (Hwang & Sung, 2018; Yoon
et al., 2020).

Previous study (Yang & Lozano-Duran, 2017) verified
that the generation of wall-shear stress fluctuations can be in-
terpreted as the outcomes of the momentum cascade across
momentum-carried eddies of different scales, and modeled by
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an additive process. Here, we first aim to couple the additive
description with the AEM to portray the generation process
of streamwise wall-shear fluctuations, resulting from wall-
attached eddies. Then, we intend to isolate the streamwise
wall-shear stress fluctuations generated by attached eddies in
a turbulent channel flow at Re; = 2003 (Re; = huc/Vv, h de-
notes the channel half-height, u; the wall friction velocity and
v the kinematic viscosity) by resorting to the IOIM (Marusic
et al., 2010; Baars et al., 2016). Direct comparison between
the statistics from these two models will be conducted to ver-
ify the consistency.

DNS database and scale decomposition
method

The DNS database adopted in the present study has been
extensively validated by Jiménez and co-workers (Hoyas &
Jiménez, 2006; Lozano-Durdn & Jiménez, 2014a). The case
at Re;=2003 is used and named as Re2000. The data are pro-
vided by the Polytechnic University of Madrid. Details of the
parameter settings are listed in Table 1.

Table 1. Parameter settings of the DNS database. Here,
Ly, Ly and L, are the sizes of the computational domain in
the streamwise, wall-normal and spanwise directions, respec-
tively. Nr indicates the number of instantaneous flow fields
used to accumulate statistics.

Case Re; Ly(h) Ly(h) L;(h) Nr
Re2000 2003 8= 2 3 94

According to the inner-outer interaction model (Marusic
et al., 2010), the large-scale motions would exert the foot-
prints on the near-wall region, i.e., the superposition effects.
Baars et al. (2016) demonstrated that this component (denoted
as u;F (x*,y*,z7)) can be obtained by the spectral stochastic
estimation of the streamwise velocity fluctuation at the loga-
rithmic region y}, namely by

wf (5 2) = B HL ) B[ ()]

M
where u, "+ is the streamwise velocity fluctuation at y; in the
logarithmic region, and, Fy and F_ I denote the FFT and the
inverse FFT in the streamwise direction, respectively. Hp is
the transfer kernel which evaluates the correlation between
ut(yt) and u;" (y}) at a given length scale A;, and can be
calculated as

(At (A g eY)
H (A'x )Y ) <,\ — >7 (2)
< N(Aye ) (U,y?f,z+)>

where «' is the Fourier coefficient of ', and «' is the complex
conjugate of 1'.

In this paper, the main concern is the 7, generated by at-
tached eddies populating logarithmic region. Thus, only the
superposition term is taken into account. The predicted posi-
tion y™ is fixed at y* = 0.3, and y{ varies from 100 (denoted as

y:, the lower bound of logarithmic region) to 0.2Re- (denoted
as yJ, the upper boundary of logarithmic region), i.e. the span-
ning of the logarithmic region (Jiménez, 2018). Once u, is ob-
tained, the streamwsie wall-shear fluctuation deduced by the
Juy,
superposition can be calculated by definition (i.e. v Iy at the

wall). We denote superposition component of Tx+ estimated
from y} as T;fL(yj) According to the attached-eddy model,

r;i () — ’E;}‘ (v}) can be interpreted as the streamwsie wall-
shear fluctuations generated by the wall-attached motions with
wall-normal heights within y;~ and y/, see Fig. 1.

Scaling law predicted by attached-eddy model

According to Yang & Lozano-Durdn (2017), the wall-
stress fluctuation can be modeled as an additive process. Sim-
ilarly, the streamwise wall-shear fluctuations generated by at-
tached eddies within y, and y; can be viewed as an discrete
random contributions:

n
Txtz = Z a;, (3)
i=1

where a; are random additives, assumed to be identically and
independently distributed (i.i.d), representing ‘L';"f associated
with attached eddies at a given wall-normal height. The num-
ber of addends is n o< [ %dy o< In(y,/ys). The momentum gen-

eration function <exp(qr;g)> can be evaluated as

(explan)) = (explga) ~ GO, @)

where ¢ is a real number, T(q) = C|ln(exp(ga)) is called
anomalous exponent, C; is an constant. (4) is called strong
self similarity (SSS). If a is a Gaussian variable, the anoma-
lous exponent can be recast as

©(q) = C24%, (5)

where C, is an another constant. On the other hand, an ex-
tended self-similarity (ESS) is defined to describe the rela-

tionship between <exp(qr,l;)> and <exp(q0’c;f0)> (fixed go)
(Benzi et al., 1993), i.e.,

>§(q,qo) 7 ©)

(explar)) = (explaotes)

where &(g,qo) is a function of ¢ (fixed gg). Note that ESS
does not strictly rely on i.i.d of the addends, but the additive
process Eq. (3).

Considering that y;~ is the lower bound of the logarith-
mic region, the increase of y; in Eqgs. (1) corresponds to the
enlargement of the addends in the additive description (see
Eq. (3)). In this way, the connection between AEM and IOIM
are established, and the AEM predictions (see Eqs. (4)-(6)) can
be verified directly.

Results and Discussion

To shed light on the generation mechanism of 7, associ-
ated with attached eddy, we define a moment generating func-
tion based on the above-mentioned decomposition, i.e.

Glayy) = (expla(e 0 T2 00)))- @



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

Figure 1. A schematic of the attached-eddy model (Hwang, 2015). Each circle represents an individual attached eddy. y;~ and y; are
the lower and upper bound of the logarithmic region, respectively. yar is the outer reference height, and varies from y; to y;.

Figure 2. G as functions of y, /ys for ¢ = +5 and g = £3.

Fig. 2 shows the variations of G as a function of y, /ys
for ¢ = £5 and g = +3. Power-law behaviours can be found
in the interval between 1.7 < y,/ys < 2.9 for positive ¢ and
1.7 < y,/ys < 4 for negative ¢, justifying the validity of SSS,
i.e., Eq. (4). This observation highlights that the superpositions
of wall-attached log-region motions on wall surface follow the
additive process, characterized by Eq. (3). It is also worth
mentioning that the power-law behaviour can be observed for
larger wall-normal intervals for negative g. As G(q,y}") quan-
tifies T),:i(yj) — 7 (y}), which features the same sign as g,
this observation is consistent with the work of Cheng et al.
(2020), which showed that the footprints of the inactive part of
attached eddies populating the logarithmic region are actively
connected with large-scale negative 7,. Other ¢ values yield
similar results and are not shown here for brevity.

The anomalous exponent s(q) can be obtained by fitting
the range 2 <y, /ys < 2.9, where both positive and negative g
display good power-law scalings. Fig. 3(a) displays the varia-
tion of the anomalous exponent s(g) as a function of g. The
solid line denotes the quadratic fit within —0.5 < g < 0.5.
It can be seen that the variation of s(q) is very close to the
model prediction, i.e., the quadratic function as Eq. (5) with
C> = 0.00629. Only minor discrepancies between DNS data
and model predictions can be observed. As such, it is reason-
able to hypothesize that the streamwise wall-shear stress fluc-
tuation 7, generated by attached eddies of a given size follows

(b) *  present database ®  Jwamoto et al. (2002)
v Abe et al. (2004) A Huetal (2006)
1.04 <« Del dlamo et al. (2003,2004)
® A. Lozano-Duran & Jimenez(2014)
> Lee & Morse (2015) ® Chengetal. (2019) ®
0.8 @ Kaneda & Yamamoto (2021) * - p:3
+O 7 = = - Model prediction ce---"""7"
s - <
N 061
&
P .
\ «__--p=2
044  ____- «---*""""
——————— <
*
0.2 I
————— 1*?"."""—_-_* i p=1
[ 4
T T 1
100 1000 10000
Re
T

Figure 3. (a) Anomalous exponent s(g) as a function of g.
The black line is a quadratic fit; (b) second- to sixth- order
moments of T;f as functions of Re;. The dashed lines are the
log-normal predictions from Eq. (8)-(10).

the Gaussian distribution. Moreover, we can also estimate the
statistical moments of 7, by taking the derivative of G(g,y")

with respect to g around ¢ = 0 (Yang et al., 2016), i.e.,

(sa) = T30

~2C,InRez, 8)
q=0
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Figure 4. G(gq) as functions of G(-2) for ¢ =
—1,—3,—5,—7. Both vertical and horizontal axes in (a)
are plotted in logarithmic form.
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Fig. 3(b) shows the variations of second- (p = 1) to sixth-
(p = 3) order moments of 7, calculated from DNS of channel
flows (Iwamoto et al., 2002; Del Alamo & Jiménez, 2003; Abe
et al., 2004; Del Alamo et al., 2004; Hu et al., 2006; Lozano-
Durén & Jiménez, 2014b; Lee & Moser, 2015; Cheng et al.,
2019; Kaneda & Yamamoto, 2021) and compares them with
the model prediction, i.e., Eq. (8)-(10). For the second- and
fourth- order variances, the model predictions are roughly con-
sistent with the DNS results. The comparisons also indicate a

Reynolds-number dependence of <T);2+>, which has been re-

ported by vast studies (Schlatter & Orlii, 2010; Mathis et al.,
2013; Guerrero et al., 2020), and may be ascribed to the su-
perposition effects of the wall-attached log-region motions.
For sixth-order moments, the model prediction displays sub-
stantial discrepancies with the DNS data. It is expected since
high-order moments are dominated by the rare events resulting
from the intermittent small-scale motions (Frisch & Donnelly,
1996), which can not be captured by IOIM.

ESS (i.e., Eq. (6)) is another scaling predicted by the mul-
tifractal formalism. Different from SSS, ESS does not rely on
the i.i.d of the addends, but the additive process (see Eq. (3)).
Fig. 4 shows the ESS scalings for go = —2 and gg = 2, re-
spectively. ESS holds for the entire logarithmic region. The
observation suggests that the streamwise wall-shear fluctua-
tions generated by logarithmic motions obey the additive pro-
cess, though the streamwise wall shear fluctuations generated
by attached eddies with wall-normal heights at approximately
0.2h™ are not identically and independently distributed due to
the scale interactions (see Fig. 2), which are not described by
the attached-eddy model.

CONCLUSIONS

In summary, the present study reveals that IOIM and
AEM are consistent to each other quantitatively. The sta-
tistical characteristics of the superpositions of log-region ed-
dies follow the predictions of AEM, namely, the SSS and

ESS scalings. Based on these observations, we conclude that
the streamwise wall-shear stress fluctuations generated by at-
tached eddies populating the logarithmic region can be treated
as Gaussian variables. Considering the fact that the inten-
sity of wall-shear stress fluctuations is typically underpredicted
by the state-of-the-art wall-modelled large-eddy simulation
(WMLES) approaches (Park & Moin, 2016), the results pro-
posed in the present study may be constructive for the devel-
opment of the LES methodology.
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