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ABSTRACT this ODE becomes
In wall-modeled large-eddy simulations (WMLES), the
near-wall model plays a significant role in predicting the skin vttt !
friction, although the majority of the boundary layer is re- dyt  144F° M

solved by the outer large-eddy simulation (LES) solver. In
this work, we aim at developing a new ordinary differen-
tial equation (ODE)-based wall model, which is as simple as
the classical equilibrium model yet capable of capturing non-
equilibrium effects and low Reynolds number effects. The
proposed model reformulates the classical equilibrium model
by parameterizing the mixing-length function in terms of the
boundary-layer shape factor. The performance of the new
model is validated by predicting a wide range of canonical
flows with the friction Reynolds number between 200 and
5200, and the Clauser pressure-gradient parameter between -
0.3 and 4. Compared to the classical equilibrium wall model,
remarkable error reduction in terms of the skin friction pre-
diction is obtained by the new model. Moreover, since the
new model is ODE-based, it is straightforward to be deployed
for predicting flows with complex geometries and therefore
promising for a wide range of applications.

MODEL

We begin by considering the definition of the total shear
stress T/p = (Vv + v)(dU/dy), where V is the kinematic vis-
cosity, dU /dy is the mean shear, and V; is the eddy viscosity,
which Cabot (1995) defines as v; = fur, where / is the mixing
length (specified later), the wall friction velocity us = \/7,/p,
the wall shear stress 7,, = T|,—o, and p denotes the density.
This definition of the total shear stress can be interpreted as an
ordinary differential equation (ODE) for the mean streamwise
velocity profile U[y]. After non-dimensionalizing by uz and v,

The mixing length can be redefined as ¢, to account for the
wall-normal variation of the total shear stress, which leads to

du+ 1

— = 2
dyt 144 @)

The mixing length is parameterized as

+ _ + o 7£2
G =xy (1—exp(~(55) 3)

Cabot & Moin (2000) chose the damping coefficient AT = 17.

For near-equilibrium flows, Cabot’s model is quite suc-
cessful since the log law coefficients k and B are relatively
robust. However, for flows where non-equilibrium effects
are significant, such as the adverse-pressure-gradient bound-
ary layers shown in Figure 1(a), the log intercept constant B
exhibits non-universality. The log slope also exhibits non-
universality but to a lesser extent. Therefore, it is assumed
to be a constant in this work.

In this work, we permit the damping function to depend
on the interior LES solution in order to capture the variation
in the log intercept in non-equilibirium flows. The motivation
for this decision is that the interior partial differential equation
(PDE) solver can capture non-equilibrium effects that are ne-
glected by the ODE wall model. The exact dependence that is
advanced is informed by data analysis and is discussed next.
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Dependence of wall model closure on the LES

A database is assembled from various existing high
fidelity simulations (either Direct Numerical Simulations,
DNSs, or Wall-Resolved Large-Eddy Simulations, WRLESS).
Included are zero-pressure-gradient boundary layers (ZPG-
BLs) (Sillero et al., 2013; Spalart, 1988; Eitel-Amor et al.,
2014), fully developed channel and pipe flows (Lee & Moser,
2015; Wu & Moin, 2008), adverse-pressure-gradient bound-
ary layers (APGBLs) with five different streamwise-varying
pressure-gradient conditions (Bobke et al., 2017), and two air-
foil flows with specified angle of attack AoA= 0°, 5° respec-
tively (Tanarro et al., 2020; Vinuesa et al., 2018).

For each profile in this database, we solve the ODE given
in Eq. 2 for various values of the damping function A™ to de-
termine the best fit value of AT, which is defined as the value
of AT that minimizes the least square error between the refer-
ence data and the modeled velocity profile (the solution of the
ODE) over the domain y € [0,0.18], where § is a measure of
the boundary layer thickness.

The best fit values of the damping function AT are plotted
versus the pressure gradient parameter o = % in Figure 1(a)
and versus the boundary layer shape factor H in Figure 2(b).
Note that H = 6*/0, where 6* denotes the boundary layer
displacement thickness and 6 denotes the boundary layer mo-
mentum thickness. Clearly, there is a much higher correlation
of AT with H than with o. This motivates the following mod-
eling choice

AY[H]=Co+CiH )

where Cy = 27 and C; = 7.4 (according to the least squres
regression of the data in Figure 2(b)). Fitting of B or AT versus
o was considered by Huffman & Bradshaw (1972); Granville
(1989); Johnstone et al. (2010); Nickels (2004); Duprat et al.
(2011), but fitting versus H has not been considered before and
is better motivated by the present database.

In equilibrium flows, such as the channel, pipe, and zero
pressure gradient boundary layer, the law of the wall has
needed only small modifications to optimally fit these velocity
profiles. However, in pressure-gradient boundary layers, rel-
atively large changes in the logarithmic intercept are required
(see Figure 1(a)). Most of the classical mixing-length-based
models for non-equilibrium flows rely on a non-dimensional
pressure-gradient parameter as an input.

As discussed above, the classical pressure-gradient pa-
rameters ¢ or 3 in combination with Reynolds number Re; do
not uniquely and completely define the boundary layer veloc-
ity profile. The reason is that these pressure-gradient parame-
ters are unaware of the spatial (or temporal in a Lagrangian
sense) history of the flow, see e.g., Johnstone et al. (2010)
(concerning o) and Bobke et al. (2017) (concerning Re; and
B). Only the local pressure gradient effect is taken into account
instead of the integrated effect on the flow in the streamwise
(or temporal) dimension.

However, these integrated history effects are significant in
non-equilibrium flows. The most straightforward solution for
incorporating the boundary layer history effects into the wall
model is to employ a PDE-based wall model, but this leads
to a significantly increased computational cost. Instead, we
propose that the same objective can be achieved by correlat-
ing AT with the boundary-layer shape factor H for the ODE-
based wall model and hypothesizing that AT (H) is a universal
function. For boundary layers, the shape factor is defined as

H = 6% /6, where the displacement thickness 6* is defined as

. [0 U
5 _/0 (l—a)dy. 5)

and the momentum thickness 0 is defined as

Sy U

The rationale for the hypothesis that A = A[H] is based on the
following two observations. First, non-equilibrium effects di-
rectly modify the the boundary-layer shape factor H Tamaki
et al. (2020). Second, the dominant contribution to the shape
factor in WMLES comes from the outer PDE solver, which
captures non-equilibrium (history) effects by construction, as
demonstrated in Griffin & Fu (2020). These observations im-
ply that by correlating the inner wall model with the shape
factor, the history effects captured by the outer solver can be
leveraged by the wall model.

As show in Figure 2, a much better collapse is observed
when plotted versus the shape factor H, than versus the inner
and outer pressure-gradient parameter (with a coefficient of
determination R? = 0.90 compared to 0.73).

Note that these regressions only apply to the present mix-
ing length model and damping function given in Eq. (3), for
fully turbulent, incompressible flows with zero wall penetra-
tion. Although the optimal choices of the regression coeffi-
cients may be different for other mixing-length models, the
suitability of correlating A* with H and Re; may still hold in
general.

Prediction the wall shear stress

In this a priori study, the data at the matching location
(y = 0.19) is provided from DNS or WRLES, such that any
resulting errors can be attributed to the wall model instead of
to the matching data. The relative error &, is defined as the
difference between the wall shear stress 7,, computed from the
wall model and that from DNS or WRLES.

As shown in Figure 3(a), the relative error of the wall
shear stress from the classical Cabot’s model is as large as
17% for cases with strong pressure gradients. Meanwhile,
the error from the new model, as shown in Figure 3(b), is
typically less than 2%, with a maximum of 5%. Cases with
the strongest pressure gradients have the largest errors for the
classical model and the most remarkable error reductions by
switching to the new model. For very few cases there is a tiny
error increase of about 1%, which can be attributed to the fit-
ting errors evident in Figure 2(b).

The resulting velocity profile from the classical and
present models are shown in Figure 1(b). The classical model
incorrectly predicts the equilibrium solution in this flow. On
the other hand, the new model correctly predicts a shift in the
log law that is in agreement with the reference WRLES data.

CONCLUSION

Whereas most classical stress-based wall models assume
a universal value for the mixing-length damping coefficient
AT, the new method correlates A™ with the boundary-layer
shape factor H. The proposed correlation of A™[H] makes a
substantial improvement to the prediction of the velocity pro-
file and the wall shear stress for a large range of Reynolds num-
bers and pressure gradient conditions. By depending on H, the
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inner ODE-based wall model can leverage additional informa-
tion from the outer PDE-based solver. As a result, the new
model incorporates an integral measure of the streamwise and
temporal history of the flow and is accurate in non-equilibrium
scenarios, while retaining similar computational efficiency as
classical equilibrium models.
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Figure 1: (a) The mean streamwise velocity U™ plotted versus the wall-normal coordinate y™ for wall-bounded flows with
various values of the streamwise pressure gradient parameter §. § = 4.2,2.3,1.1 correspond to WRLESs of APGBLs by
Bobke et al. (2017), B = 0 is the DNS of a ZPGBL at Re; = 2000 by Sillero et al. (2013), and 8 = —0.1 is the DNS of
a channel flow at Re; = 5200 by (Lee & Moser, 2015). (b) The data from the APGBL with § = 4.2 is reduplicated in
(b) (dashed line). Also shown are wall-modeled velocity profiles, which are constructed by solving Cabot’s model (red
circles) and the present model (green diamonds) using matching data from the WRLES sampled at y = 0.15. In both
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panels, the log law is shown for reference (x = 0.41 and B = 5.2).
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Figure 2: Distributions of the best-fit value of the wall-model damping coefficient A* plotted versus (a) the inner pressure-
gradient parameter o and (b) the boundary layer shape factor H. The green lines denote the least-squares regressions of
the best-fit coefficients with the corresponding abscissas. The symbol color indicates Re; of the reference data and the
symbol type indicates the flow type, i.e., channel flows (diamonds), ZPGBLs (circles), pipe flows (squares), APGBLs

(triangles), and airfoil flows (pentagrams).
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Figure 3: Distributions of the relative error £;, between the wall stress predicted by the well-resolved simulations and that
by the wall-modeled simulations (from Cabot’s model (a) and the present model (b)) versus the underlying shape factor
H. The symbol color indicates Re; of the reference data and the symbol type indicates the flow type, i.e., channel flows
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(diamonds), ZPGBLs (circles), pipe flows (squares), APGBLs (triangles), and airfoil flows (pentagrams).



