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ABSTRACT

The so-called elastoinertial regime of turbulence in poly-
mer solutions is dominated by nearly two-dimensional struc-
ture. Direct simulations of two-dimensional channel flow of
a viscoelastic fluid have revealed the existence of a family of
Tollmien-Schlichting (TS) attractors that is nonlinearly self-
sustained by viscoelasticity. Here, we describe the evolution
of this branch in parameter space and its connections to the
Newtonian TS wave and to elastoinertial turbulence (EIT). At
Reynolds number Re=3000, there is a solution branch with
TS-wave structure but which is not connected to the Newto-
nian solution branch. At fixed Weissenberg number, Wi and
increasing Reynolds number from 3000-10000, this attractor
goes from displaying a striation of weak polymer stretch lo-
calized at the critical layer to an extended sheet of very large
polymer stretch. This transition can be attributed to a coil-
stretch transition when the local Weissenberg number at the
hyperbolic stagnation points of the Kelvin cat’s eye structure
of the TS wave exceed 1/2. At Re=10000, unlike 3000, the
Newtonian TS attractor evolves continuously into EIT as Wi
is increased. We describe how the structure of the flow and
stress fields changes, highlighting a “sheet-shedding” process
by which the individual sheets associated with the critical layer
structure break up to form the layered multisheet structure
characteristic of EIT. We also find that at sufficiently high Wi,
this solution family extends down in Reynolds number to be-
tween 150 and 200, indicating that viscoelasticity can sustain
turbulence at Reynolds numbers well below Newtonian transi-
tion.

INTRODUCTION
Addition of long chain polymer molecules to a fluids has

tremendous effects on wall-bounded turbulence, the most dra-
matic being the substantial reduction of the friction factor
(Toms, 1949, 1977). This phenomenon has found wide use
in applications that seek energy efficiency in flow processes.
(Fink, 2012; Burger et al., 1982; King, 2012).

This work describes recent results that have led to an im-
proved understanding of this phenomenon. The main focus
is channel flow of a dilute solution of high molecular weight
polymer, so the ratio between solvent and total viscosity, β sat-
isfies 1−β � 1, and the ratio between extensional and shear
viscosities (Trouton ratio) Tr is� 1. For the FENE-P consti-
tutive model with chain length parameter b, this requires that
b(1−β )� 1. This is the regime of primary relevance for drag
reduction, where as a practical matter it is desired to keep the
shear viscosity of the fluid low (1−β � 1), but the extensional
viscosity high (b(1−β )� 1). The Reynolds number regime
considered is Re∼ 102−104, i.e., near transition.

It is well-known that viscoelasticity suppresses the near-
wall streamwise vortices that dominate Newtonian turbulence
(Dubief et al., 2004; Kim et al., 2007; White & Mungal,
2008). A number of studies have captured this phenomena
by studying the effect of viscoelasticity on three-dimensional
(3D) nonlinear traveling wave solutions of the Navier-Stokes
equations termed exact coherent states (ECS). (Stone et al.,
2002; Stone & Graham, 2003; Stone et al., 2004; Li et al.,
2005, 2006; Li & Graham, 2007). These ECS contain the ba-
sic self-sustaining ingredients of transitional Newtonian turbu-
lence i.e quasistreamwise vortices and streaks. A comprehen-
sive review of ECS can be found in Graham & Floryan (2021).

Li and coworkers (Li et al., 2006; Li & Graham, 2007)
found that the ECS are so weakened by viscoelasticity that they

1



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

(a)

(b)

Figure 1. Snapshots of simulations of EIT in (a) channel flow
(Terrapon et al., 2014) and (b) pipe flow (Lopez et al., 2019).
In (a) color contours indicate polymer stretching and lines in-
dicate vortex strength Q. In (a) isosurfaces indicate Q.

are no longer self-sustaining and lose existence. Recognizing
that in general, viscoelasticity is not experimentally observed
to drive relaminarization, these authors suggested the possibil-
ity of new viscoelastic mechanisms for turbulence coming into
existence and being unmasked as the Newtonian structure are
suppressed (Li et al., 2006).

Indeed, instead of complete relaminarization (except in
narrow parameter ranges at transitional Re), recent studies
have unearthed a polymer-driven chaotic flow state dubbed
elastoinertial turbulence (EIT) dominating the flow at high lev-
els of viscoelasticity (Samanta et al., 2013a). EIT (in this
parameter regime) displays multilayered sheets of polymer
stretch emanating from near the walls (see Figure 1a) and
very weak, spanwise-oriented vortices – a sharp contrast to
the 3D quasistreamwise vortex structures of Newtonian wall
turbulence. Sid et al. (2018) have found that the sheetlike
stress flucturations that dominate simulations of EIT in chan-
nel flow are still present in 2D simulations, indicating that, in
contrast with Newtonian turbulence, EIT is not fundamentally
3D. Similarly, near-wall localized, nearly-axisymmetric vor-
tex and stress structures (Figure 1b) have been reported in pipe
flow simulations of EIT (Lopez et al., 2019). The present work
aims to elucidate the origin of these structures.

FORMULATION

This study focuses on two-dimensional pressure-driven
channel flow with constant mass flux. Two-dimensional flow
is chosen because of the strongly spanwise-oriented structures
observed in prior simulations in the EIT regime Sid et al.
(2018). We also report some results from 3D simulations to
indicate how these affect the main 2D structure. The x and
y axes are aligned with the streamwise and wall-normal di-
rections, respectively. Lengths are scaled by the half channel
height l, so the dimensionless channel height Ly = 2. The do-
main is periodic in x with length Lx. Velocity v is scaled with
the Newtonian laminar centerline velocity U ; time t with l/U ,
and pressure p with ρU2, where ρ is the fluid density. The
polymer stress tensor τ p is related to the polymer conforma-
tion tensor α through the FENE-P constitutive relation, which
models each polymer molecule as a pair of beads connected
by a nonlinear spring with maximum extensibility b.

We solve the momentum, continuity and FENE-P equa-

tions by direct numerical simulation (DNS):

∂v
∂ t

+ v ·∇v =−∇p+
β

Re
∇

2v+
(1−β )

ReWi
(
∇ · τp

)
, (1)

∇ · v = 0, (2)

τ p =
α

1− tr(α)
b

− I, (3)

∂α

∂ t
+ v ·∇α−α ·∇v− (α ·∇v)T =

−1
Wi

τ p. (4)

Here Re= ρUl/(ηs+ηp), where ηs and ηp are the solvent and
polymer contributions to the zero-shear rate viscosity. The vis-
cosity ratio β = ηs/(ηs +ηp). We fix β = 0.97 and b = 6400.
Since 1− β is proportional to polymer concentration and b
to the number of monomer units, these parameters correspond
to a dilute solution of a high molecular weight polymer. The
Weissenberg number Wi = λU/l, where λ is the polymer re-
laxation time.

For integrating the momentum equation, second-order
central differences were used for spatial discretization, and
second-order Adams-Bashforth and Crank-Nicholson methods
were used for time-integration of the convection and diffusion
terms, respectively. The FENE-P equation was discretized us-
ing a high resolution central difference scheme.

Using computations in channel flow at Re= 1500, Shekar
et al. (2019) observed a narrow zone of Wi where the only at-
tractor was the laminar base state. This zone separated drag-
reduced Newtonian turbulence at lower Wi and EIT at higher
Wi, corroborating the experimental observations of Choueiri
et al. (2018). The laminar flow remains linearly stable in
the EIT regime, but only very small (but finite) perturbations
are sufficient to drive the flow to EIT. EIT in this parameter
regime displays polymer stretch fluctuations localized near the
wall. In particular, a clear resemblance was noted between the
EIT structure and the viscoelastic extension of the classical
Tollmien-Schlichting (TS) mode, which at the chosen param-
eters is the slowest decaying mode from linear stability analy-
sis. Similarly, resolvent analysis predicts strong amplification
of this structure in the presence of viscoelasticity. This strong
amplification implies, consistent with the fully nonlinear re-
sults, that even very weak disturbances may be sufficient to
trigger EIT.

The viscoelastic TS mode displays polymer stretch fluc-
tuations that are sharply localized to critical layers, i.e wall-
normal positions near the top and bottom walls where the
streamwise velocity equals the real part of the wave speed.
Critical layers can be thought of as the most favorable posi-
tions for energy exchange between the mean and fluctuations,
because they are the positions where both have the same speed.
These results indicate a role for TS-like critical layer mecha-
nisms at EIT.

The key observations from Shekar et al. (2019) are sum-
marized in Figure 2. Fig. 2a shows a snapshot from the
3D DNS, illustrating the sharp localization of stretch fluctu-
ations in a layer near the wall. Except in the layers where
the stress fluctuations are largest, this flow is dominated by
structures with a wavelength of half the domain size (i.e. 5
channel half-heights). Fig. 2b shows the structure filtered to
keep only this wavelength. Fig. 2c shows the slowest decay-
ing structure from linear stability analysis at a wavelength of
5 – this is the viscoelastic continuation of the linear Tollmien-
Schlichting mode. Finally, Fig. 2d shows the most amplified
resolvent mode under the same conditions. The resemblance
of the full nonlinear structure to the TS mode is apparent.
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Figure 2. Summary of results at Re = 1500 (Shekar et al.,
2019).(a) Snapshot of v′ (line contours) and α ′xx (filled
contours) from 3D nonlinear DNS at Re = 1500, Wi =
20, where ′ denotes fluctuations. (b) Phase-matched aver-
age (kxLx/2π,kzLz/2π) = (2,0) structures from 3D DNS.
(c) Structure of the TS mode at Re = 1500,Wi = 20, and the
same wavenumbers as in (b). (d) Structure of the most strongly
amplified resolvent mode at Re = 1500,Wi = 20, the same
wavenumbers as in (b), and c = 0.37. In all plots, contour lev-
els are symmetric about zero. For v′ dashed - negative, solid
- positive. For α ′xx black - negative, red - zero and yellow -
positive.

Building on the above observations, we turn to elucidat-
ing the role of Tollmien-Schlichting wave structures in EIT. In
contrast to Re= 1500, at Re= 3000 a nonlinear self-sustaining
TS wave exists in the Newtonian limit. For Wi & 6, we find
a viscoelastic family of attractors whose structure is virtu-
ally identical to the linear TS mode, and in particular exhibits
strongly localized stress fluctuations at the critical layer posi-
tion of the TS mode. A snapshot of one of these solutions,
at Wi = 10,Lx = 5, is shown in Figure 3; note the close re-
semblance to Figure 2c. At the parameter values chosen, this
solution branch is not connected to the nonlinear TS solution
branch found for Newtonian flow, and thus represents a so-
lution family that is nonlinearly self-sustained by viscoelas-
ticity (Shekar et al., 2020). (The laminar state remains lin-
early stable, though again, as in Shekar et al. (2019), only an
extremely small perturbation is required to drive the solution
away from laminar.) Evidence indicates that this branch is con-
nected through an unstable solution branch to two-dimensional
elastoinertial turbulence (EIT).

Now moving up from Re = 3000 to Re = 10000, it is
found that the Newtonian nonlinear TS wave solutions attrac-
tor evolves continuously and without hysteresis into EIT as Wi
is increased from zero to about 13 – the two flows are part of
the same solution family (Shekar et al., 2021). The snapshots
in Figure 4 illustrate the evolution of the flow and stress fields
as Wi increases. Figure 4a shows the self-sustained nonlinear
Tollmien-Schlicting wave in the Newtonian limit Wi = 0. As
Wi increases to 4, sheets of polymer stretch appear, driven by
the extensional flow at the hyperbolic stagnation points of the
Kelvin cat’s eye structure of the TS wave. As Wi increases
further, the simple sheet structures that originate with the TS
critical layer structure evolve into the multilayered structure of
EIT through a process that we call “sheet-shedding”: Individ-
ual sheets associated with the critical layer structure break up,
with the fragments further sheared as they travel downstream.
An intermediate stage of this process (Wi = 8) is shown in
Figure 4c. Finally as Wi increases further, the typical overlap-
ping sheet structure becomes fully developed, as illustrated in

Figure 3. (a) Snapshot of the finite amplitude Tollmien-
Schlichting wave solution at Re = 3000, Wi = 10.White con-
tours are wall-normal velocity, colors are deviations of xx poly-
mer stretch from laminar.

(a) Wi=0

(b) Wi=4

(c) Wi=8

(d) Wi=13

Figure 4. Snapshots of the finite amplitude Tollmien-
Schlichting wave solution at Re = 10000 and (a) Wi = 0, (b)
Wi = 4, (c) Wi = 8, (d) Wi = 13. White contours are wall-
normal velocity, colors are deviations of xx polymer stretch
from laminar.

Figure 4d. Note the resemblance between this structure and
Figure 1a.

An important question is the robustness of two dimen-
sional result to three-dimensional perturbations. In particular,
given the tilted-sheet structure of the stress fluctuations, one
might expect that a 3D perturbation that changes the position
of these sheets will expose different parts of the sheet to dif-
ferent streamwise velocities – a portion of the sheet perturbed
toward the centerplane will be convected faster than an a por-
tion perturbed toward the wall. This velocity differential might
be expected to tend to tear the sheets apart. Figure 5a-b show
snapshots of αxx at y = 0.8 at two instants from a 3D simula-
tion at Re = 2000,Wi = 30 that starts from a 2D initial condi-
tion subjected to small random perturbations. Since the sheets
are tilted with respect to the flow direction, this view “slices”
obliquely through the sheets of stress. At short time (t = 36,
Fig. 5a), the sheets are coherent in the z direction, but as time
proceeds, (t = 180, Fig. 5), they become less so. Figure 5c
shows a 3d view of the structure at t = 180, illustrating how
the sheets are perturbed in 3D. As the sheets lose coherence,
the overall structure becomes weaker and the drag closer to the
laminar value. Nevertheless the basic sheet structure remains.

We began this discussion with results at Re = 1500, well
below the regime where the Newtonian flow becomes linearly
unstable and also below the limiting Reynolds number for
the existence of self-sustaining nonlinear Tollmien-Schlichting
waves in that limit. The existence of nontrivial flows at finite
Wi in these cases illustrates the strongly subcritical nature of
the origin of these structures. Many studies (e.g. Samanta et al.
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(a)

(b)

(c)
Figure 5. . Shapshots illustrating evolution of 3d αxx struc-
ture from 2d EIT at Re = 2000,Wi = 30,Lx = 6.2,Lz = 3.1.
Flow is left to right. (a) Slice at y = 0.8, t = 36. (b) As in (a)
but at t = 180. (c) 3D view showing side, front and bottom.

(2013a)) have indicated that turbulence in viscoelastic flows
can exist at Reynolds numbers well below the Newtonian on-
set value, so we conclude this study by examining the solution
family we have found as Re decreases below the regime con-
sidered above.

To do this, we have done DNS at Wi = 30, starting at
Re = 10000 and incrementally decreasing Re, letting the solu-
tion reach statistical steady state before further decreasing Re.
At Wi = 30, the viscoelastic TS wave (EIT) solution family
persists down to Re between 150 and 200. Figure 6 shows the
time-averaged norm of αxx fluctuations vs. Re. Figure 7 shows
a snapshot of the stress structure at Re = 400, revealing that
the near-wall sheetlike structure persists. Preliminary results
indicate that as Wi increases to 50, a very similar threshold
Reynolds number is found. These results may be connected
to observations of non-laminar flow in polymer solutions at
Reynolds numbers below transition (Samanta et al., 2013b). A
number of other recent works have also examined the issue of
turbulent (or at least non-laminar) flow in rectilinear viscoelas-
tic flows at low Reynolds number Buza et al. (2022a,b)Khalid
et al. (2021). Those studies indicate the presence of viscoelas-
tic instability and nonlinear self-sustaining structures even at
vanishingly small Re, with a stress structure that is localized
near the centerplane, rather than near the walls as we observe
here. Therefore, multiple structures and mechanisms seem to
exist for emergence of nonlaminar flows of viscoelastic flu-
ids even at low Re. Experimental observations in pipe flow
(Choueiri et al., 2021) are consistent the emergence of “cen-
ter mode” fluctuations at low Re, which evolve toward “wall-
modes” as Re increases.

Figure 6. Norm of stress fluctuations vs. Re at Wi = 30.

Figure 7. Snapshot of EIT solution at Re = 400,Wi = 30.
White contours are wall-normal velocity, colors are deviations
of xx polymer stretch from laminar.
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Christof, Morozov, Alexander N, Wagner, Christian & Hof,
Björn 2013b Elasto-inertial turbulence. Proceedings of the
National Academy of Sciences 110 (26), 10557–10562.

Shekar, Ashwin, McMullen, Ryan M., McKeon, Beverley J.
& Graham, Michael D. 2020 Self-sustained elastoinertial
Tollmien–Schlichting waves. Journal of Fluid Mechanics
897, A3.

Shekar, Ashwin, McMullen, Ryan M., McKeon, Beverley J.
& Graham, Michael D. 2021 Tollmien-Schlichting route to
elastoinertial turbulence in channel flow. Physical Review
Fluids 6, 093301.

Shekar, Ashwin, McMullen, Ryan M, Wang, Sung-Ning,
McKeon, Beverley J & Graham, Michael D 2019 Critical-
Layer Structures and Mechanisms in Elastoinertial Turbu-
lence. Phys. Rev. Lett. 122 (12), 124503.

Sid, S, Terrapon, V E & Dubief, Y 2018 Two-dimensional dy-
namics of elasto-inertial turbulence and its role in polymer
drag reduction. Phys. Rev. Fluids 3 (1), 011301.

Stone, PA & Graham, Michael D 2003 Polymer dynamics in
a model of the turbulent buffer layer. Phys. Fluids 15 (5),
1247–1256.

Stone, PA, Waleffe, F & Graham, Michael D 2002 Toward a
structural understanding of turbulent drag reduction: Non-
linear coherent states in viscoelastic shear flows. Phys. Rev.
Lett. 89 (20), 208301.

Stone, Philip A, Roy, Anshuman, Larson, Ronald G, Waleffe,
Fabian & Graham, Michael D 2004 Polymer drag reduc-
tion in exact coherent structures of plane shear flow. Phys.
Fluids 16 (9), 3470–3482.

Terrapon, Vincent E, Dubief, Yves & Soria, Julio 2014 On the
role of pressure in elasto-inertial turbulence. J Turbul 16 (1),
26–43.

Toms, B. A. 1949 In Proc. Int. Congr. Rheology. North-
Holland.

Toms, B. A. 1977 On the early experiments on drag reduction
by polymers. Phys. Fluids 20, S3–S8.

White, Christopher M & Mungal, M Godfrey 2008 Mechan-
ics and prediction of turbulent drag reduction with polymer
additives. Annu Rev Fluid Mech 40, 235–256.

5


