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ABSTRACT

This work introduces a hierarchical data-driven model
augmentation technique to alleviate structural inadequacies in
a transition model. This technique is demonstrated by intro-
ducing two different model augmentations, f3; and 3, within
Wilcox’s 1988 k- turbulence model. These functions are con-
secutively inferred in a model-consistent fashion as functions
of local flow quantities to improve predictions for bypass tran-
sition caused by freestream disturbances and flow separation,
respectively. The key step described in the process is design-
ing a physics-informed blending function to isolate the effects
of the B, only to cases involving flow separation. B is in-
ferred from only two flat plate cases from the ERCOFTAC
dataset, whereas LES data for only one compressor cascade
case is used to infer $,. While both, §; and B,, consistently
improve predictive accuracy across all unseen test cases, it is
observed that transition is predicted significantly upstream for
cases involving transition of attached flow under adverse pres-
sure gradients, and some cases involving flow separation.

INTRODUCTION

While Reynolds-Averaged Navier-Stokes (RANS) simu-
lations have been the industry workhorse for applications in-
volving design and optimization of flow paths, turbulence clo-
sures used in RANS models consist of model-form inadequa-
cies that can result in significant prediction errors for cases
involving complex geometries or unseen physical conditions.
Over the past decade, the emergence of machine learning as
a scientific tool has led to the development of several data-
driven frameworks that can extract corrections to reduced-
fidelity models from high-fidelity data. These include the
Field Inversion and Machine Learning (FIML) framework by
Parish & Duraisamy (2016), Integrated Inference and Machine
Learning (IIML) by Holland ef al. (2019), Sparse Regression
of Turbulence Stress Anisotropy (SpaRTA) by Schmelzer et al.
(2020), Deep learning PDE Model (DPM) by Sirignano et al.
(2020), Data Assimilation and Machine Learning by Volpiani
et al. (2021), End-to-end Differentiable Learning by Strofer &
Xiao (2021), and EVolutionary algorithm for the development

of Expressions (EVE) by Waschkowski et al. (2022) among
others. It should be noted, however, that model augmentations
extracted using several of these frameworks struggle to im-
prove predictive accuracy across a wide range of geometries
and physical conditions.

Srivastava & Duraisamy (2021) presented Learning
and Inference assisted by Feature-space Engineering (LIFE)
framework which is based on the IIML framework by Hol-
land et al. (2019) and provides expert modelers with guiding
principles, tools and techniques to extract generalizable, ro-
bust and model-consistent augmentations from limited data.
This work presents a hierarchical model augmentation strategy
via the LIFE framework that involves consecutive introduction
and inference of two augmentation functions, 8 and f3;, into a
baseline turbulence model to enable prediction of bypass tran-
sition caused by freestream disturbances and flow separation,
respectively. The robustness offered by the LIFE framework
(by reverting to baseline model behavior within feature-space
regions where no training data is available) makes it easier
to infer hierarchical augmentations. Designing an appropriate
blending function is key to extend the applicability of hierar-
chically augmented models to a wide range of geometries and
operating conditions. A blending function, o, is designed in
this work to isolate the effects of the hierarchical augmenta-
tion to cases involving flow separation.

METHODOLOGY

The LIFE framework is explained as follows. Assume
that a baseline model is given as % (u;&) = 0 where u and &
represent the model states and the inputs to the model (mesh,
boundary conditions, etc.), respectively. An augmentation
function B(n(u;&);w) is then carefully introduced within the
model such that it can modify model behavior for physical con-
ditions affected by the inadequacy in consideration and has
a minimal influence on other physical conditions. The aug-
mented model can then be written as Z(u, B(n(u;€));w)) =
0. Here n refers to features which are local geometrically
invariant quantities derived from model states. The addi-
tional dependence of 11 on & is to account for features be-
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ing functions of quantities like wall distance or gradients of
model states. The augmentation function f8 is characterized
by function parameters w. The LIFE framework offers several
guiding principles for feature design, the major ones among
which include choice of features relevant to the inadequacy in
consideration, physics-based (instead of statistics-based) non-
dimensionalization, a bounded functional form for features,
and ensuring that physical conditions that require different
augmentation values are manifested in different regions within
the feature-space. In addition to these guidelines, LIFE also
introduces localized learning techniques to ensure that the aug-
mentation behavior remains unchanged in the feature-space
regions that do not contain data. This offers robustness and
ensures that the augmented model falls back to its baseline be-
havior for unseen physical conditions. To infer the optimal val-
ues of these parameters from available data, the inverse prob-
lem shown in Eqn. 1 is solved.
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Here, k is the index assigned to individual training datasets,
€ refers to the cost function defining the discrepancy be-
tween sparsely available data and corresponding predictions
for quantities y, and 7 refers to a regularization function.
Once the minimization problem is solved, the optimal weights
w* can be used within the augmented solver for predictions as
R (u,B(n(u;6));w*)) = 0. Note that this work does not use
any explicit regularization as there is ample implicit regular-
ization as a consequence of inference from multiple cases, the
augmentation function being a function of specified features
and even the underlying functional form of the augmentation
being constrained in the feature-space.

Augmenting Wilcox’s 1988 k-» model

A bare-bones intermittency transport equation, inspired
from the model by Durbin (2012), was added to Wilcox’s 1988
k- model (Wilcox (1988)) and augmented as shown in Eqn.
2.
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Here, the production of turbulent kinetic energy Py is given as
follows.

2 du;
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The main differences compared to Durbin’s model are that the
Ymax term is replaced by B;By, and that the function Fy is
absent from the source term. f3; is inferred using data from
only two flat plate cases to enable predictions for bypass tran-
sition due to freestream disturbances. 3 is inferred from only
a single compressor cascade case (after B is inferred) to en-
able predictions of separation-induced bypass transition. The
blending function ¢ can vary between zero and unity and acts

as an automatic switch to activate/deactivate the f, augmenta-
tion depending on whether the flow exhibits flow separation.
The baseline value for i, B, and o is unity which makes
Y =1 everywhere in the physical domain, hence ensuring base-
line k- model predictions. It should be noted here that two
augmentation functions are needed because a single augmen-
tation function was unable to establish a functional relation-
ship consistent with bypass transition originating due to both,
freestream disturbances as well as flow separation. Given how
the augmentation term is introduced in the model, the spatial
field for intermittency (7) closely resembles the B; 85 field. A
transport equation is used, instead of directly multiplying the
source term in the k-equation with f8; 85, because it provides
a smoother field for the solver to work with, hence preserving
stability and also because it brings in the effects of flow history
within the intermittency.

Feature Design

The features used in this work are identical to those pro-
posed by Srivastava & Duraisamy (2021). Both, f8; and 3, are
functions of the same three features. These features are briefly
described as follows.

o aQ  [90.
M mm<2.188Um\/ 7v 3 )

The first feature is the ratio of the vorticity Reynolds number
Req = d29/(2.188V) (see Durbin (2012)) and Reg ,,, where
6;, is the correlation for transition momentum thickness given
by Praisner & Clark (2004) as 6; = 1/7V/90. All freestream
quantities are extracted from a user-specified distance away
from the wall. A conservative upper-bound of 3 is also explic-
itly applied.
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The second and third features distinguish the laminar bound-
ary layer upstream of the transition location from near-wall re-
gions in a turbulent boundary layer and turbulent flow regions,
respectively. It should be noted here that it is in these laminar
boundary layer regions where the augmentation values need to
be significantly lower than their baseline value of unity.

Localized Learning

An interpolation-based C%-continuous functional form
was chosen to perform localized learning for this application.
The feature-spaces corresponding to both, 81 and 3, were dis-
cretized into uniform grids. The augmentation values on the
nodes of these grids act as function parameters, while the aug-
mentation at any point in the feature-space is evaluated via
multi-linear interpolation based on these nodal values (see Fig.
1). Note here that since the functional form is constrained to
be C%-continuous, sudden jumps in the augmentation values
are not possible within the feature-space. On the other hand,
the C%-continuity provides for excellent convergence charac-
teristics of the flow solver.
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For a feature space location in the shaded region,
the multilinear expression reads

B = Boo + (Bro — Boo)m + (Bor — Boo)mz + -+
(B11 + Boo — B0 — Bor)mme

Figure 1. Schematic detailing C°-continuous interpolation-

based augmentation functions

Designing the Blending Function

To create a blending function o that varies between zero
and unity, one or more sigmoid functions can be applied to an
appropriate quantity fs. Ge et al. (2014), used the function
od,, (ny, - V)|S|/v/2|S|? to distinguish regions that exhibit flow
separation. Here n,, is the wall-normal direction correspond-
ing to the nearest point on the wall. This can be calculated by
evaluating the gradient of the wall distance (d,,) and normal-
izing the result (to ensure that the magnitude is unity). Note
that for body-fitted grids with low cell skewness, this approx-
imation is fairly accurate close to the walls and that is exactly
where the blending function is needed. |S| denotes the mag-
nitude of the strain rate tensor. Three changes were made to
this function to formulate an appropriate fs that was found to
effectively detect separated flow. The changes include the use
of vorticity magnitude Q instead of |S|, use of laminar length
scale 1/Vv/Q instead of d,,, and using a bounded functional
form. The final functional form of fs is shown in Eqn. 6.

Jo = (mﬁ%bﬁ)fﬂ”) (ﬂs(:m) ©

This function mainly targets the region within a separated flow
where Q increases with wall distance i.e., where fs is posi-
tive. However, it was seen that the o needs to remain active
for very small negative values of fs as well, to predict transi-
tion accurately for cases exhibiting separated boundary layers.
This is probably because fs is positive in a very thin region
and intermittency needs to be lowered within a slightly thicker
region for k-production to sufficiently drop in order to predict
transition at the correct location. The final functional form of
o is given in Eqn. 7.

1
7= T4 exp(—(fo +0.05)/0.003)
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RESULTS

This section describes the results obtained after inferring
B1 (B> assumed to be unity everywhere in the feature-space),
inferring B, (B; frozen to its inferred form and ¢ = 1) and
introducing the functional form for & in a step-wise manner.

Figure 2. Mesh used for T3A and T3B cases

Figure 3. Mesh used for T3C1, T3C2, T3C3 and T3CS5 cases
Table 1. Inflow conditions for the T3 test cases
Cases  Tuyy Vi L(inm) Rep;,
T3A 0.035 14.0 1.5 520000
T3C1 0.1 50.0 1.65 660000
T3B 0.065 100.0 1.5 940000
T3C2 0.037 12.0 1.65 550000
T3C3 0.034 8.0 1.65 418000
T3C5 0.043 17.0 1.65 946000
Inferring S,

For this step, B, was constrained to unity for all regions
in the feature space, which means all function parameters for
B> were set to unity. Flat plate cases T3A and T3Cl1 from
the ERCOFTAC dataset are used to train f3; whereas other flat
plate cases viz., T3B, T3C2, T3C3 and T3C5, were used to test
the inferred augmentation. Meshes used for these cases can be
seen in Figs. 2 and 3. The inflow conditions for all these cases
are listed in Table 1.

Training Only cases T3A and T3C1 were used to in-
fer function parameters 3;. Note here that transition occurs
in a zero pressure gradient region for T3A and a favorable
pressure gradient for T3C1. The training procedure is sim-
ilar to that used by Srivastava & Duraisamy (2021). The
cost functions for both these cases were chosen to be the sum
squared discrepancy in the skin friction coefficients i.e., ¥ =
ICs pred — Cf,dataH%. As stated previously, no regularization
was used as ample implicit regularization is already present.
The functional form corresponding to the interpolation-based
C-continuous augmentation function was characterized by
discretizing the feature-space into a grid with 45 x 15 x 15
cells. Steepest gradient descent was used to solve the infer-
ence problem and the method of adjoints (along with auto-
matic differentiation) was used to evaluate sensitivities. A step
size of 0.1 was used. The intermittency was restricted within
its physical bounds of 0 and 1 after every steepest gradient de-
scent step. The corresponding predictions for both these cases
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Figure 4. Skin friction predictions for T3C1. Blue dots -
Data; Red curves - Predictions using baseline model; Green
curves - Predictions with parameters inferred for §; only
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Figure 5. Residuals vs solver iterations

are shown in Fig. 4. The transition location is predicted well
for both these cases while achieving better laminarization up-
stream to the location compared to that observed in Srivastava
& Duraisamy (2021). The residual convergence plot when the
T3A case is solved with the augmented model is shown in Fig.
5. The convergence characteristics are far superior compared
to what was seen in Srivastava & Duraisamy (2021). This is
because of the continuous nature of the functional form.

Testing The prediction results of this inferred aug-
mentation on other flat plate cases are shown in Fig. 6. While
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Figure 6. Skin friction predictions for T3 testing cases. Blue
dots - Data; Red curves - Predictions using baseline model;
Green curves - Predictions with parameters inferred for f3;
only

the transition predictions for T3B and T3CS5 are reasonably ac-
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Figure 7. Blade geometries for compressor cascade

Figure 8. Mesh used for NACA 65-010 compressor cascade
case

curate, transition is predicted significantly upstream of the true
locations for T3C2 and T3C3. Even though the model was
not trained on cases where transition occurs in adverse pres-
sure gradients (which is the case for T3C2 and T3C3), these
predictions are worse compared to those in Srivastava & Du-
raisamy (2021). This is because a continuous augmentation
does not allow for sudden jumps in augmentation values within
the feature space and hence intermittency has a more smeared
growth. As soon as this smeared growth results in intermit-
tency values high enough to facilitate k-production, transition
is predicted. Hence, while C%-continuous augmentation func-
tions provide more laminarization and significantly better con-
vergence characteristics, they also lead to a lower predictive
accuracy for transition in adverse pressure gradient regions.
This can be corrected in the future by using a more adaptive
functional form for the augmentation function.

Inferring S,

LES data for six compressor cascade cases was provided
by RTRC. The geometries along with their blade stagger an-
gles have been shown in Fig. 7. The mesh used for the
NACA65-010 compressor cascade case is shown in Fig. 8.
Similar meshes were used for other geometries. The inflow
and outflow conditions for the compressor cascade cases have
been shown in Tables 2 and 3.  Fig. 9 shows the transition
predictions made using the augmented model on a NACA 65-
010 compressor cascade geometry. In this case, transition was
predicted at the separation location which is significantly up-
stream of the actual transition location. Holding function pa-
rameters of B constant at their inferred values, and assuming
o a constant baseline value of 1 for this step, function param-
eters for 3, are inferred as follows.
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Table 2. Inflow conditions common for all compressor cas-
cade cases

P0.in TO,in Tu;y Vt.in/Voo

14.7705724 PSI  288.5672892K 1% 10

Table 3. Outlet back-pressure and flow angles for compres-
sor cascade cases

Cases pp (in PST)  Flow angles
NACA65-010  14.695946 45°
NACAG65-410  14.715946 45°

NACAG65-1210  14.725946 45°
NACAG65-1810  14.725946 45°
NACA65-1510  14.735946 60°
NACAG65-2110  14.735946 60°

NACA 65-010 (Wall shear stress profile)
.+ Daa
Zero
15{ —— Baseline

Skin fricti

] 06
Fractional Chord

Figure 9. Wall shear stress predictions for NACA 65-010.
Black dots - Data; Red curves - Predictions using baseline
model; Green curves - Predictions with parameters inferred
for B only

Training The training process for 3, was identical to
that used for §; with three differences.

e Only the NACA 65-010 compressor cascade case was
used to infer 3,.

e The feature-space for B, was divided into 30 x 10 x 10
cells.

e The cost function % was set to the sum squared discrep-
ancy between the predictions and LES data for wall shear
stress.

Fig. 10 shows the wall shear stress profile predicted using the
hierarchical augmentation. The predicted transition location
shows excellent agreement with data. However, regions down-
stream of the transition location show a lower wall shear stress.
This discrepancy is due to other inadequacies in the turbulence
model and cannot be alleviated within the bounds set for the
current augmentation.

Testing When tested on other compressor cascade
configurations, the hierarchically augmented model showed
a significant improvement compared to the results obtained

NACA 65-010

Zero
Data
— 5

[0
ctional Chord

Figure 10. Wall shear stress predictions for NACA 65-010.
Black dots - Data; Red curves - Predictions with parameters
inferred for B; only; Green curves - Predictions with parame-
ters inferred for both, B; and 3,

NACA 65-410 NACA 65-1210

Zer0 sol - Zero
Data Data
5

Wal shear stress (7)

0 06 0 q 0 02 0 06
Percent Fractional Chord Percent Fractional Chord

(a) NACA 65-410 (b) NACA 65-1210

NACA 65-1510 NACA 65-1810

Wall shear stress ()

0 G 0% ‘ D 02 [ 06
Percent Fractional Chord Percent Fractional Chord

(c) NACA 65-1510 (d) NACA 65-1810

NACA 65-2110

Wall shear stress ()

0 06
Percent Fractional Chord
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Figure 11. Wall shear stress predictions for unseen compres-
sor cascade cases. Black dots - Data; Red curves - Predictions
with parameters inferred for 8| only; Green curves - Predic-
tions with parameters inferred for both, §; and 3,

using only f;. The corresponding plots for NACA 65-410,
NACA 65-1210, NACA 65-1510, NACA 65-1810 and NACA
65-2110 are shown in Fig. 11. In some cases transition is pre-
dicted considerably upstream of the true transition location.
However, the model shows consistent and significant improve-
ments in predictive accuracy even for these cases when com-
pared to using just f3;.

Introducing ¢

In the absence of any blending function to isolate effects
of By, the predictive accuracy on the flat plate cases is abysmal
when both 31 and 3, are used as shown by red curves in Fig.
12. However, when the blending function is used, the transi-
tion location predictions are restored (green curves) close to
where they are predicted when using only B; (black dashed
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Figure 12.  Skin friction predictions for T3 cases. Blue dots
- Data; Black dashed curves - Predictions with parameters in-
ferred for B; only; Red curves - Predictions with parameters
inferred for both, §; and f3,, with ¢ = 1; Green curves - Pre-
dictions with parameters inferred for both, 8, and f3,, with
6 =1/(1+exp(—(fo +0.05)/0.003))

curves). The predictions for transition under adverse pres-
sure gradients (cases T3C2 and T3C3) actually improves when
BiB5 is used instead of just fB;. It should be noted here that
the blending function has negligible effect on the compressor
cascade cases.

CONCLUSIONS

This work describes a hierarchical augmentation tech-
nique to infer multiple augmentation functions that can address
various model-form inadequacies manifested in different phys-
ical regimes. The process is demonstrated by consecutively in-
ferring two augmentation functions within a bare-bones inter-
mittency function that was added to Wilcox’s 1988 k-@ model
to predict transition caused by freestream disturbances and
flow separation, respectively. An appropriate blending func-
tion is designed to isolate the effects of the second augmenta-
tion to cases involving separation-induced transition. The aug-
mentation consistently improves predictions across a range of
geometries and flow conditions. However, significant inaccu-
racies are observed for cases involving transition of attached
flows in adverse pressure gradients and some cases involving
separation-induced transition as well. In such cases, the aug-
mentation predicts an early transition. Future work involves
development of better features and a formal framework to opti-
mize grid resolution in feature-space to reduce these inaccura-

cies. In addition to hierarchical augmentations, this work also
provides a brief commentary on continuous functional forms
for augmentations. As is demonstrated in the results, while
such functional forms provide excellent solver convergence,
they could slightly hamper accuracy for applications like by-
pass transition where sharp jumps in augmentation values in
the feature-space might provide better results.
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