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ABSTRACT
Design of active control strategies for turbulent drag re-

duction is a challenging task due to the complex dynamics
and the difficulty in devising good control targets. Deep
reinforcement learning (RL), an emergent machine learning
method capable of learning complex control strategies for
high-dimensional systems from data, is able to address broad
macroscopic control objectives, such as drag minimization,
making it promising for flow control application. How-
ever, the iterative RL process requires vast amounts of data
to be generated from interactions with the target system.
For high-dimensional and computationally demanding simu-
lations, such as direct numerical simulations (DNS), this data
generation step can be prohibitively expensive.

We mitigate this challenge in a completely data-driven
fashion by combining data-driven reduced-order models
(ROM) of the flow system with deep RL. We construct our
ROMs by combining an undercomplete autoencoder with a
neural ordinary differential equation (ODE)–both of which are
trained directly from data. The autoencoder compresses the
high-dimensional state representation into a low-dimensional
representation while the neural ODE predicts the system dy-
namics as an ODE in this new representation. This ROM is
substituted in place of the true system during RL training to
accelerate the learning process. The ROM-based control strat-
egy is then deployed to the flow system for control validation.

We first apply our method to the Kuramoto-Sivashinsky
equation (KSE), a 1D turbulence proxy that exhibits spa-
tiotemporal chaos, equipped with actuators. We demonstrate
that we are capable of learning a ROM of the actuated dynam-
ics and with a control goal analogous to drag reduction, we
show that the ROM-based RL strategies perform well in the
KSE. We highlight that the RL agent discovers and stabilizes
a forced equilibrium solution. Next, we apply our method to a
DNS of Couette flow with control in the form of jets that mod-
ify the wall-normal velocity at the wall. We find a ROM that
captures key short-time behavior of the underlying system us-
ing drastically fewer dimensions, and we show RL forces the
system to relaminarize far more frequently than the underlying
system.

Data-Driven Reduced Order Modeling
The first step in our procedure is to learn a ROM surro-

gate of the system we aim to control. We assume we have
access to time series data [s(t0),s(t1), ...,s(tM)] of the system
and that the dynamics of the system lie (or approximately lie)
on some low-dimensional manifold M embedded in Rd (i.e.
s ∈ M ⊂ Rd); an assumption that has been affirmed for many
dissipative systems (Temam, 1989). We can find a parame-
terization h ∈ Rdh that is of a much smaller dimension than
the ambient space dh ≪ d (when the dimension is minimal we
write dM in place of dh). We then formulate the time-evolution
of h with an ODE. Once constructed, the ROM forecasts tra-
jectories of h (which we can map to the ambient space s) and
uses these trajectories to train the RL agent. Figure 1 (a)-(c)
outlines the learning procedure for the ROM.

To find the ROM we first use an undercomplete autoen-
coder to learn the parameterization of the manifold h. An
autoencoder consists of an encoding function h = χ(s;θE)
and a decoding function s = χ̌(h;θD). Both of these func-
tions are constructed by neural networks (NN) with weights
θ = [θE ,θD] that are trained simultaneously to minimize the
reconstruction loss L = 1/M ∑

M
i ||s(ti)− χ̌(χ(s(ti)))||2. We

compute the gradient of this loss with respect to the NN pa-
rameters (dL/dθ ) and use stochastic gradient descent to up-
date these parameters.

A challenge with this approach is determining the nec-
essary degrees of freedom to fully parameterize the manifold
on which the the data lies. Whitney’s Embedding Theorem
proves as long as the encoding maps to R2dM then h is home-
omorphic to s (Whitney, 1936). However, dM is unknown a
priori, so we must find a way to determine it. We estimate
this dimension by tracking the error of the autoencoder as a
function of dimension, where we have empirically observed
a dramatic improvement in performance once dh agrees with
dM (Linot & Graham, 2020, 2021).

After finding a reduced-dimensional representation h, we
next find a dynamical system for h. We chose to learn an ODE
for the dynamics of h such that ḣ = g(h,a;θODE), where g is
a NN and a is the action taken by the controller. The action
must be input here because the RL agent iteratively interacts
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Figure 1: Procedure for learning a NODE-ROM from data, combining it with RL to approximate a control policy, and
deploying the approximate policy back to the true system

with the system to determine the best control policy. Using
this ODE we predict new states by integrating forward in time

h̃(ti + τ) = h(ti)+
∫ ti+τ

ti
g(h(t),a;θODE)dt. (1)

We train g by minimizing the difference between the predic-
tion (h̃(ti +τ)) and the known state (h(ti +τ)), in the manifold
coordinates, giving the loss J = ∑

M
i ||h(ti + τ)− h̃(ti + τ)||2

(Chen et al., 2019).

Learning a Control Strategy From Data

We use deep RL to learn control strategies from data. The
general deep RL framework is a cyclic interactive learning pro-
cess. During each cycle, the RL agent, the embodiment of the
control policy represented by neural-network at = π(st ;θRL),
outputs a control action, at , given a state observation of the
system, st . The impact of this action on the system is then
quantified by a scalar reward, rt , which is defined by the con-
trol objective. During training, the agent attempts to learn the
mapping between st and at that maximizes the cumulative long
time reward and updates accordingly each cycle. In our ROM-
based RL framework, we train the agent in the reduced space
of the ROM, such that we instead learn at = π(ht ;θRL). During
agent deployment to the original system for control validation,
we simply precede the agent with the encoder ht = χ(st ;θE) to
map state observations, st , to ht as this is coordinate system the
agent was trained with. Fig. 1 (d)-(e) outlines the RL training
and deployment procedure. We comment that our framework
can applied with any general deep RL method.

Example 1: Kuramoto-Sivashinsky Equation
We consider the periodic KSE, given by

∂v
∂ t

=−v
∂v
∂x

− ∂ 2v
∂x2 − ∂ 4v

∂x4 + f (x, t) (2)

where f is the control term defined as in Bucci et al. (2019)
and corresponds to 4 evenly spaced Gaussian jets,

f (x, t) =
4

∑
i=1

ai(t)√
2πσs

exp
(
− (x−Xi)

2

2σ2
s

)
. (3)

We evolve trajectories for a domain size of L = 22, which
exhibits spatiotemporal chaos with a Lyapunov time of ∼22
time units. Spatial discretization is performed with Fourier
collocation on a mesh of 64 evenly spaced points and in our
formulation the state vector u consists of the solution values
at the collocation points. The system is time evolved with a
third-order semi-implicit Runge-Kutta scheme (Bucci et al.,
2019). From this simulation we train autoencoders with size
500 sigmoid activated hidden layers (for encoder, decoder) and
neural ODEs on 40,000 snapshots of data (st = u(t)) separated
0.25 time units apart experiencing random jet actuations. Fig-
ure 2 shows the performance of autoencoders as we vary the
dimension dh. For this system, the error is sufficiently low at
dh = 12, so we use this autoencoder for the mappings χ and
χ̌ . Furthermore, we emphasize that we achieve orders of mag-
nitude improvement in reconstruction performance compared
to PCA while using the same number of dimensions. In this
representation of the manifold coordinates, we train a neural
ODE using the same dataset. In Figure 3 we show the short-
time predictions of this model with random actuations match
the true system well for around 1-1.5 Lyapunov times. We
also comment that in the absence of actuation, i.e. at = 0, the
ROM performs similarly well, indicating that the ROM is able
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Figure 2: Mean squared error of autoencoders and PCA
on test data of the KSE for various dimensions.

Figure 3: (a) random actuation sequences ai(t) (b)
ground truth KSE trajectory starting from a random ini-
tial conditions following actuation sequences in (a), (c)
the decoded NODE-ROM trajectory following actuation
sequence (a) and the same initial condition in (b).

to capture the underlying natural dynamics absent of control
inputs despite having been trained with no control-free data.

We now use this ROM as a surrogate model for train-
ing the RL agent. In this demonstration we utilize the Deep
Deterministic Policy Gradient (DDPG) RL method (Lillicrap
et al., 2016). As an analogue to energy-saving in the flow
control problem, we seek to minimize the dissipation and to-
tal power input of the KSE. This optimization is realized by
maximizing the reward r =−D+Pf , where D = ⟨( ∂ 2u

∂x2 )
2⟩ and

Pf = ⟨( ∂u
∂x )

2⟩+ ⟨u f ⟩, respectively. Here ⟨·⟩ is the spatial aver-
age.

The control agent was trained with 1000 episodes of 100
time units long (i.e. 400 transitions per episode), with each
episode beginning from a random on-attractor initial condition
of the natural, i.e. unforced, KSE. Jet actuations implemented
by the control agent, at , were maintained constantly from st to

st+τ , where τ = 0.25. In this work the DDPG actor and critic
networks utilized ReLU activated hidden layers of size 128
and 64, respectively, followed by tanh and linear activations to
the outputs of size 4 and 1, respectively.

To assess the performance of our ROM-based policy, the
learned control agent was applied to the NODE-ROM, with an
example controlled trajectory shown in Fig. 4a. We note that
after a brief control transient, the control agent navigates the
NODE-ROM to an equilibrium (steady) state and stabilizes it.
The quantities targeted for minimization, D and Pf , estimated
from the predicted trajectory u(t), are shown in Figure 4c, re-
vealing that this equilibrium exhibits dissipation much lower
than the natural unactuated dynamics. To assess how well
this ROM-based control policy transfers to the original KSE
(i.e. the true system), the same policy is applied to the true
KSE with the same initial condition, as shown in Fig. 4b. We
note that the controlled trajectory in the KSE yields not only
quantitatively similar transient behavior but also the same low-
dissipation equilibrium state as was targeted in the NODE-
ROM. The transient behaviors between the two are structurally
very similar, although the NODE-ROM displays slightly less
strongly damped oscillations as it drives the trajectory to the
steady state. The values of D and Pf computed from the true
system, shown in Fig. 4d, are nearly identical to that of the
NODE-ROM in Fig. 4c.

To demonstrate the robustness of the ROM-based policy,
shown in Fig. 4e are the dissipation trajectories of the true KSE
beginning from 15 randomly sampled test initial conditions
that the ROM-based control agent has not seen before. We
highlight that the control agent is able to consistently navigate
the system to the same low-dissipation state within ∼ 150 time
units, with one initial condition requiring ∼ 200 time units to
converge. Finally we note that although the RL training hori-
zons were only 100 time units long, the control agent is able
to generalize to achieve and maintain control well beyond the
the horizon it was trained in.

Here we emphasize that the ROM-based policy drives the
dynamics to an equilibrium state in both the NODE-ROM and
the true KSE, indicating that not only does the NODE-ROM
capture this state, but it captures the dynamics leading to it
accurately enough such that the RL agent could discover it
during training and exploit it in a manner that still translates
to the original system. We further emphasize that both the
NODE-ROM and agent were never explicitly informed of this
low-dissipation state’s existence. Finally, we highlight that the
discovered low-dissipation state is an unstable state that is sta-
bilized by the control agent. If control is removed, the system
returns to the natural chaotic dynamics. The ROM-based RL
agent is comparable to that of an RL agent trained directly with
original system via direct interactions in both performance and
targeting strategy (Zeng & Graham, 2021).

These observations indicate that the RL policy trained on
the model transfers very well to the true system. We attribute
this performance to the fact that both the NODE-ROM and RL
agent operate in Markovian fashion, i.e. even if the model has
slight inaccuracies, so long as the modeled dynamics are rea-
sonably accurate this does not matter once the agent makes
its new state observation. Returning to the dynamical sig-
nificance of the low-dissipation equilibrium state discovered
and stabilized by the RL agent, a continuation in mean forc-
ing magnitude was performed. To do so, we Newton-solved
for equilibrium solutions to the KSE starting with the discov-
ered equilibrium state while gradually decreasing the magni-
tude of the mean actuation profile to zero, as was done in Zeng
& Graham (2021). Solutions identified by this continuation
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Figure 4: ROM-based RL agent applied to the same initial condition in the a) true KSE and b) data-driven reduced-order
model (decoded, dh = 12). The corresponding invariant quantities of dissipation and total input power for the c) true KSE
and d) learned reduced-order model. The dashed black line represents the system average of the natural KSE dynamics.
e) Controlled dissipation trajectories of the true KSE beginning from 15 randomly sampled test initial conditions.

Figure 5: Forcing continuation from the forced equi-
librium state (under forcing f = α22) discovered by
NODE-ROM based RL policy (orange, dashed) to the
unactuated KSE system (purple). The known equilib-
rium E1 of the KSE system is also provided (dots).

in forcing magnitude are shown in Fig. 5, which reveals that
equilibrium state captured by the NODE-ROM and discovered
by the RL agent is connected to a known existing solution of
the KSE known as E1 (Cvitanović et al., 2010); we obtained
a similar result with an RL agent trained on interactions with
the full system (Zeng & Graham, 2021). A similar observation
was made for RL control of 2D bluff body flow (Li & Zhang,
2022). We speculate that in systems with complex nonlinear
dynamics, the discovery and stabilization of desirable underly-
ing equilibrium solutions (or other recurrent saddle-point solu-
tions such as unstable periodic orbits) of the system may be a
fairly general feature of RL flow control approaches. The non-
linear and exploratory nature of RL algorithms facilitates the
discovery of such solutions, and since the dynamics are slow
near these solutions, little control action should be required to
keep trajectories near them.

Example 2: Turbulent Couette Flow
The second system we consider is Plane Couette flow in a

channel with two periodic boundary conditions defined by the
nondimensionalized incompressible Navier-Stokes Equations.

∂u
∂ t

+u ·∇u =−∇P+Re−1
∇

2u

∇ ·u = 0,
(4)

where u = [u,v,w] is the vector of streamwise, wall-normal,
and spanwise velocities, and P is the pressure. The bound-
ary conditions at the wall are u(±1) = ±1, ∂v/∂y(±1) = 0,
w(±1) = 0, v(1) = 0, and v(−1) = ai(t) f (x,z). This final
boundary condition is the actuation, located only at the bottom
wall, which is in the form of two spatially localized slot-style
jets that inject or suck fluid in the wall-normal direction with
zero net-flux. These slot-jets are oriented along the streamwise
direction with Gaussian profiles f (x,z) in the spanwise direc-
tion with Vmax = max(| f (x,z)|) = 1/20 and ai(t) ∈ [−1,1]. In
Fig. 6 we show the wall-normal velocity in the case of a0 = 1
and a1 =−1.

Our code was written in Python to speed up com-
munication with the RL code and follows the same algo-
rithms used by Gibson et al. (2008). In particular, we
convert the field to Fourier space in x and z and Cheby-
shev space in y with a resolution of 32x35x32 Fourier-
Chebyshev-Fourier modes. Then we use the multistep Adams-
Bashforth/Backward-Differentiation 3 method described in
Peyret (2011) for time evolution using a timestep of ∆t = 0.02.
This results in a set of implicit Helmholtz equations that we
solve at each timestep, and through an influence matrix we
compute the pressure required to satisfy ∂v/∂y(±1) = 0. This
procedure does not result in an incompressible velocity field,
so we apply a Tau correction to exactly enforce this constraint.
The influence matrix and Tau correction methods are described
in Kleiser & Schumann (1980). Unlike the Gibson et al. code,
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Figure 6: Visualization of the localized wall-normal ve-
locity of the slot-style jets located at y =−1.

Figure 7: The L2 norm of the velocity field, u, of a trajec-
tory produced by Channel Flow 2.0 by Gibson and our
python-based Couette DNS code starting from the same
initial condition.

Figure 8: Trajectory of the projection of the Couette flow
field onto the first POD mode, and the prediction by the
neural ODE.

our code allows us to modify the boundary conditions at the
wall by solving for intermediate values in the influence ma-
trix and tau correction methods at each timestep, as opposed
to once at the beginning. As illustrated in figure 7, we vali-
dated our code by showing that solutions of both codes track
nearly exactly for 1000 time units.

We consider Couette flow at a Re = 400 and domain size
of [Lx,Ly,Lz] = [7π/4,2,6π/5], which are the parameters con-
sidered by Gibson et al. (2008). For this system we gener-
ated 80,000 snapshots of data (st = u(t)) separated by 1 time

Figure 9: Trajectories beginning from 25 unseen initial
conditions evolving under no control (blues) and ran-
dom slot actuations (reds). The mean drag achieved
across the 25 trajectories is shown in black for no con-
trol (solid) and random actuation (dashed)

unit. We performed proper orthogonal decomposition (POD)
for dimension reduction. In future work an autoencoder will be
used. After reducing the dimension with POD, we train neu-
ral ODEs with this lower-order representation. Figure 8 shows
the trajectory of the 1st POD coefficient for the true system
and the ROM where h is constructed from the first 10 POD
modes. This preliminary result indicates we can achieve qual-
itatively similar trajectories with very few degrees of freedom
using neural ODEs.

With the success of training RL agents with ROMs of
the KSE, and having promising preliminary results with low-
dimensional ROMs for Couette flow, our next objective is
to train a RL agents on Couette flow ROMs utilizing the
Soft Actor-Critic (SAC) RL algorithm (Haarnoja et al., 2018).
However, before this, we first learn a control policy directly
from the DNS (i.e. direct interactions) to determine a bench-
mark control performance and timescale required for training.
We train our RL agent for several hundred episodes, with each
episode lasting for 300 time units and beginning from a tur-
bulent initial condition that does not naturally laminarize in
300 time units. Actions input by the control agent persist for 5
time units, i.e. the agent makes 60 actions per training episode.
The reward the agent attempts to maximize is the negative of
the drag (normalized such that laminar is 0), which is given
by r = −

∫ Lx
0

∫ Lz
0 ∂u/∂y(−1)+ ∂u/∂y(1)− 2dxdz. Shown in

Fig. 9 is the reward vs. time of trajectories generated by our
DNS evolving from 25 new unseen initial conditions under no
control and with random slot actuations, i.e. the slot actua-
tions were randomly sampled from a uniform distribution of
the allowable control range every 5 time units. We observe
that in the presence of random slot actuations, the mean drag
across the 25 trajectories over a horizon of 900 time units is
worse than in the presence of no control. Furthermore, some
instances where the system would naturally laminarize are dis-
rupted by the random slot-jets. Shown in Fig. 10 is again
the total drag vs. time of Couette flow generated by our DNS
evolving from the same 25 new unseen initial conditions un-
der no control and in the presence of our trained RL agent. We
observe that with the learned RL control policy, the mean drag
across the 25 trajectories over a horizon of 900 time units is
drastically lowered compared to no control. We highlight that
the RL agent learns to direct the chaotic turbulent dynamics to
the laminar state within this window of 900 time units, which
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Figure 10: Trajectories beginning from 25 unseen initial
conditions evolving under no control (blues) and the RL
control agent (reds). The mean drag achieved across the
25 trajectories is shown in black for no control (solid)
and the RL agent (dashed).

can be seen by the 19 of 25 trajectories laminarizing due to the
control agent. This is a stark improvement compared to the 5
of 25 naturally laminarizing trajectories in the presence of no-
control and 4 of 25 in the presence of random slot actuations.

The current accomplishment is the first, to the extent of
our knowledge, application of deep RL to learn an active con-
trol strategy from a direct numerical simulation of turbulent
Couette flow. To train such an agent required 3+ weeks of
simulation time on 4 processors. We highlight that our prelim-
inary NODE-ROMs is capable of simulating 500 time units of
Couette flow in less than the time it takes to simulate 1 time
unit by DNS. In forthcoming work we aim to demonstrate the
application of training the RL agent via NODE-ROM in place
of the computationally intensive DNS for efficient estimation
of control strategies.
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