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ABSTRACT
The Quasi-Spectral Viscosity (QSV) method is a clo-

sure for a high-order finite-difference discretization of the fil-
tered compressible Navier-Stokes equations capable of unify-
ing dynamic subfilter scale (SFS) modeling and shock captur-
ing under a single mathematical framework. It introduces a
physical-space implementation of a spectral-like SFS dissipa-
tion term by leveraging residuals of filter operations, achieving
two goals: (1) estimating the energy of the resolved solution
near the grid cutoff; (2) imposing a plateau-cusp shape to the
spectral distribution of the added dissipation. The QSV ap-
proach was tested to showcase its capability to act interchange-
ably as: a shock capturing method, in a shock/sinusoidal wall
interactions problem; or as a SFS closure, in a subsonic Taylor
Green Vortex (TGV). QSV performs well compared to previ-
ous eddy-viscosity closures and shock capturing methods in
such test cases. In a supersonic TGV flow, a case which ex-
hibits shock/turbulence interactions, QSV alone outperforms
the simple superposition of separate numerical treatments for
SFS turbulence and shocks. QSV’s combined capability of
simulating shocks and turbulence independently, as well as
simultaneously, effectively achieves the unification of shock
capturing and Large-Eddy Simulation.

INTRODUCTION
Although hydrodynamic turbulence and shock formation

have been treated separately in previous literature, both are
characterized by an energy cascade from large to small scales
due to nonlinear interactions (Gupta & Scalo, 2018). There-
fore, it is proposed to treat the numerical simulation of both
phenomena in a similar fashion, as the consequence of solving
the filtered compressible Navier-Stokes equations.

The Quasi-Spectral Viscosity (QSV) method (Sousa &
Scalo, 2022b) builds upon previous development in turbulence
modeling by Kraichnan (1976) and Chollet & Lesieur (1981)
and, in shock capturing by Tadmor (1989). The first introduced

the concept of a wavenumber-dependent eddy viscosity with a
plateau at large scales and a cusp near the resolution limit to
model the energy transfer across a filter cutoff while the second
proposed to inform the magnitude of such Spectral Eddy Vis-
cosity (SEV) from the kinetic energy at the cutoff,

a

Epkcq{kc.
This renders the model dynamic, being only active when small
scales are present in the flow.

On the other hand, Tadmor (1989) studied the use of
Fourier-based discretization methods to solve the inviscid
Burgers’ equations and concluded that, if no regularization
term was introduced, the covergence of the numerical solu-
tion was not guaranteed. He then proposed to introduce a
wavenumber-dependent viscosity term concentrated on small
scales, named Spectrally Vanishing Viscosity (SVV), that
would prevent oscillations and lead to convergence to the
unique entropy solution. The idea was shown to be success-
ful by mathematical proofs and numerical experiments.

The current manuscript analyzes the SEV and SVV
frameworks and highlights their similarities bridging a gap be-
tween methods initially developed for different purposes. Such
analysis is carried out exploring the common features that exist
in both incompressible Navier-Stokes equations and the Burg-
ers’ equation. This understanding allows for the specific de-
sign of a unified method for shock capturing and subfilter tur-
bulence modeling. The QSV method is then developed in the
context of high-order finite-difference implementations and it
is tested in situations of shock dominated problems, in pre-
dominantly hydrodynamic flows and also in shock/turbulence
interaction cases. For example, QSV is able to simulate a Tay-
lor Green Vortex with both sub and supersonic initial pertur-
bations using identical structures.

FOUNDATIONS FOR THE UNIFICATION OF
SHOCK CAPTURING AND LES

The objective of this section is to highlight similarities
and establish a connection between eddy viscosity models, the
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Figure 1. Results from a priori and a posteriori analysis of the filtered Burgers’ equation at time t “ 1 with N “ 128 grid points.
Exact SFS stress (blue) compared against SFS stresses predicted by various models (see legend), in the physical (a) and spectral (b)
domain. Exact filtered solution (blue) versus a posteriori solution by various models (see legend) in the physical space (c) and their
respective energy spectrum (d).

discontinuity regularization method based on artificial addi-
tion of a spectrally vanishing viscosity (SVV) (Tadmor, 1989)
and the implementation of the Quasi-Spectral Viscosity (QSV)
method.

To begin, it is pointed out that it is possible to solve only
for the large scales present in the Navier-Stokes equations if
the original system is filtered by an operation that commutes
with the derivatives with an associated filter width (∆). That
procedure forms the mathematical framework of Large-Eddy
Simulations (LES) allowing, for example, the simulation of
turbulence in relatively coarse grids through the solution of
the filtered incompressible Navier-Stokes, constituted by the
divergence free condition Bui

Bxi
“ 0, and by the conservation of

momentum equation,

Bui

Bt
`
Buiu j

Bx j
“´

BP

Bxi
`

1
Re

B2ui

Bx jBx j
´
Bτi j

Bx j
, (1)

where P “ p{ρrefU2
ref and τi j “ uiu j ´ uiu j is the subfilter

scale (SFS) stress tensor, a remainder of the filtering operation
applied to the nonlinear governing equations. Since the SFS
term depends on the unresolved scales in the flow, it must be
modeled. The same procedure can be used to derive the filtered
version of the inviscid Burgers’ equation,

Bu1

Bt
`

1
2
Bu1u1

Bx1
“ 0,

Bu1

Bt
`

1
2
Bu1u1

Bx1
“´

1
2
Bτ11

Bx1
. (2)

Because of its simplicity, its parallel with the LES framework
and its nonlinearity that can lead to the formation of shock
discontinuities in finite time, the Burgers’ equation is used
as a way to showcase the similarities between the Dynamic
Smagorinsky (DYN) (Smagorinsky, 1963; Germano et al.,
1991), the Spectral Eddy Viscosity (SEV), the SVV and QSV
models.

The Burgers’ equation is solved in a periodic domain
x1 P r´1,1s, starting with with initial conditions u1px, t “
0q “ 1` 1

2 sinpπxq, until t “ 1 using a pseudo-spectral Fourier
method for the spatial derivatives and a 4th order Runge-Kutta
scheme for the time integration. The results obtained using
the different eddy viscosity closures are then compared with
the analytical solution based on the method of characteristics
in the physical and spectral domain. In the current work, the
procedure of comparing simulated results to a reference solu-
tion will be referred to as a posteriori analysis. In addition,
an a priori analysis is also conducted. It is defined as an op-
eration that filters the exact solution and its nonlinear terms

at a certain time instant by a sharp spectral transfer function
down to the same resolution as the numerical simulations per-
formed. This allows the comparison between the exact SFS
stress, uiu j´uiu j, and the output of each different model when
the exact filtered solution ui is used as input. The intent of
this operation is to exploit the access to a reference solution
to calculate τi j explicitly, the term that needs to be modeled to
sustain a filtered solution of a given equation, and assess each
model’s ability to generate similar effects while only having
access to the information present on the large flow scales. The
both a priori and a posteriori results are shown in physical and
spectral space in figure 1.

It can be observed that the exact energy flux to subfilter
scales spans across all resolved wavenumbers and it peaks near
the cutoff (kc), similar to Kraichnan (1976); Chollet & Lesieur
(1981)’s theoretical findings for turbulent flows. Interestingly,
previous methods for either turbulence modeling or shock cap-
turing are able to stabilize the flow with different degrees of
efficacy. The DYN model leads to a local response in physical
space and, therefore, a flat broadband spectral response, what
causes spurious high-wavenumber build up due to the insuf-
ficient damping of the resolved scales near the cutoff. Other
models do a better job by ramping up the dissipation at the
small scales but either over (SEV) or underdamp (SVV) the
large scales present in the flow.

Despite the differences in the development, purpose and
use between the models, the results in figure 1 indicate that
they can all be encompassed under a generalized format of
subfilter scale flux model consisting of a magnitude pre-factor
composed by a length scale (`) and velocity a velocity scale
(υc) and a kernel (K) which is convolved with the strain rate
tensor (Si j) and is responsible for the dissipation wavenumber
dependence, as in

τi j “ `υc
`

K ˚Si j
˘

. (3)

Additional evidences for the generalization are provided in
Sousa & Scalo (2022b).

This demonstrates that the same principles used by large-
eddy simulations of hydrodynamic turbulence, focusing on
simulating only the large, resolved or filtered scales, can be
used for discontinuity capturing as well. Ultimately, this in-
spired the Quasi-Spectral Viscosity (QSV) closure, designed
specifically to unify the LES and shock capturing methodolo-
gies in high-order finite difference implementations, which can
be generically written as,

´τ “

b

2∆Ekc

´

p1´ rGqsvq˚S
¯

. (4)
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There are two steps for implementing the method: first, es-
timating the cutoff energy, Ekc , and second, introducing a
plateau-cusp behavior as a function of wavenumber, done via
the 1´ rGqsv kernel. For these to be implemented in a high-
order finite difference setting, it was necessary for them to be
performed only using spatial operators and that was achieved
by leveraging the residuals of Padé ((Lele, 1992) and Fejér
(Vandeven, 1991) filtering operations. The details behind the
estimation of Ekc and the construction QSV wavenumber mod-
ulation kernel can be found in Sousa & Scalo (2022b).

Although the current manuscript is focused on applica-
tions based on structured finite difference solvers, the contents
of this section may serve as the foundation for the application
of an unified approach to shock capturing and SFS turbulence
modeling to different platforms, such as unstructured block-
spectral solvers. In fact, the shock capturing capability of solv-
ing for filtered governing equations was shown for high-order
flux-reconstruction settings in Sousa & Scalo (2022a). A pro-
jection onto the Legendre basis functions was used in that work
to allow for the estimation at the energy near the cutoff and for
the modulation of the dissipation at different scales. An exten-
sion for turbulent and shock/turbulence interaction problems
in this context is the next step.

QSV CLOSURE APPLIED TO THE FILTERED
COMPRESSIBLE NAVIER STOKES EQUATIONS

In this section, the compressible implementation of large
scale simulations focusing on the unification of the treatment
between shocks and turbulent eddies will be discussed. First
the governing equations will be derived from the compress-
ible Navier-Stokes relations using filtering operations and the
unclosed terms as well as their closure will be presented.

Governing equations
The compressible Navier-Stokes system of equations can

also be filtered by an operation that commutes with the deriva-
tion similarly to its incompressible counterpart (1). After the
initial filtering, it is chosen to implicitly solve density re-
lated nonlinear terms by defining the Favre filter operation
as, f̌ “ ρ f

ρ
, and solve for the Favre filtered quantities p f̌ q,

ultimately simplifying the final LES system for compressible
flows. Previous compressible LES implementations based on
the Favre-filtered equations were successfully performed with
different closure models by, for example, Vreman et al. (1995)
and Nagarajan et al. (2003). In this work, we follow the path
of the latter, and derive the Favre-filtered Navier-Stokes rela-
tions introducing a pressure correction based on the subfilter
contribution to the velocity advection,

Bρ

Bt
`
Bρ ǔ j

Bx j
“ 0,(5)

Bρ ǔi

Bt
`
Bρ ǔiǔ j

Bx j
“´

Bp
Bxi
`
Bµσ̌i j

Bx j
´
Bρτi j

Bx j
,(6)

BE
Bt
`
BpE` pqǔ j

Bx j
“
B

Bx j

ˆ

k
BŤ
Bx j

˙

`
Bµσ̌i jǔi

Bx j
´
BρCpq j

Bx j
,(7)

p
γ´1

“ E´
1
2

ρ ǔiǔi´
1
2

ρτii.(8)

The non negligible terms that contribute to the energy flux
from large to small scales are, the SFS stress tensor, τi j “

}uiu j´ ǔiǔ j, and the SFS temperature flux, q j “}Tu j´ Ť ǔ j.

SFS modeling via the QSV method
A complete model for performing compressible large

scale simulations that could include both shocks and turbulent
events is then proposed as,

τi j “ ´Cτi j

1
2

ˆ

Di j
B:ui

Bx j
`D ji

B:u j

Bxi

˙

, (9)

q j “ ´CqD j j
B :T
Bx j

, (10)

where Di j “ υipǔ jq` j is the dissipation magnitude tensor, be-
ing ` j “ ∆ j is the subfilter length scale and

υipǔ jq “

d

2E i
kc

`

ǔ j
˘

∆i
(11)

being the subfilter velocity scale. Note that the cutoff energy
estimation operation, explained in detail in Sousa & Scalo
(2022b), is carried out in the i-th spatial direction but on the
j-th filtered velocity component. Additionally, the double dot
superscript in (9) and (10) indicates the filter modulated quan-
tities, defined as

B:ui

Bx j
“
Bǔi

Bx j
˚

´

1´ rGqsv

¯

, (12)

B :T
Bx j

“
BŤ
Bx j

˚

´

1´ rGqsv

¯

, (13)

where the modulation step is performed in the three direc-
tions and rGqsv is a weighted average between Padé- and Fejér-
filtered quantities (Sousa & Scalo, 2022b). It is possible that
the cutoff energy estimation procedure will lead to large vari-
ations in space when highly localized flow features, such as
shocks, do not align with the grid or the grid itself is deformed.
In those cases, a smoothing procedure, i.e. a gaussian filter
(Cook, 2007), can be performed on the υipǔ jq term.

The values of the pre-factors, Cq and Cτi j are given by:

Cτi j “

#

1.0, if i“ j,
0.6, if i‰ j,

and Cq “ 0.8. (14)

These values are obtained by carrying out a similar a priori
analyses as the one shown in figure 1. The magnitude of
these constants are informed, though, through the application
of such procedure to test cases such as the 1D Riemann shock
tube problem (Sod, 1978) and the Taylor Green Vortex (TGV).
The details of such analyses are gathered in Sousa & Scalo
(2022b). Ultimately, the suggested constants (all in the or-
der of unitary value) work well for a broad set of test cases
as shown below. However, if different numerical schemes or
filters are used, adjustments might be necessary.

DEMONSTRATING QSV’S SHOCK CAPTURING
CAPABILITY

It is chosen to simulate a challenging test case for a shock
capturing model to assess how the QSV model behaves and
compare it against the established Localized Artificial Diffu-
sivity (LAD) (Cook, 2007; Kawai et al., 2010). Inspiration is
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Figure 2. Numerical Schlieren comparison between QSV- and LAD-based simulations of a M “ 5.0 shock in a fluid with γ “ 1.15
after it is reflected from a sinusoidal wall performed with Nx “ 1024 and Ny “ 256 grid points

.

taken from experiments reported by Denet et al. (2015) and
numerical simulations by Lodato et al. (2016), where a planar
shock wave impinges on a sinusoidal wall with 1.0 mm ampli-
tude and wavelength of 2.0 cm. These tests were designed to
confirm the theoretical results by Clavin (2013) that predicted
the formation of a lasting pattern of triple points after a shock
reflection off a smooth sinusoidally-perturbed wall.

Following Tonicello et al. (2020), a computational do-
main encompassing one wavelength and 10 cm in the wall nor-
mal direction is used to simulate a M “ 5.0 shock propagating
in a fluid with a lower specific heat ratio of γ “ 1.15, which in-
creases the strength of the reflected shock and approaches the
Newtonian limit (Lodato et al., 2017). Moreover, the shock is
initialized 7.5 cm away from the wall and the Sutherland’s law
for air was used to model dynamic viscosity.

The simulations are solved with periodic conditions at the
top and bottom boundaries together with a no slip adiabatic
wall on the left. Moreover, this test case confirms the capa-
bility of the QSV model to solve the filtered equations in dis-
torted grids. The grid-transformations necessary for such cal-
culations is described in Sousa & Scalo (2022b).

Figure 2 shows a comparison between the resolution ca-
pability of QSV- and LAD-based simulations for the same test
case. The QSV approach is able to accurately simulate the
flow dynamics, e.g. the presence of triple points at the inter-
section of the incident shock (IS), the Mach stem (MS), the re-
flected shock and the slip line (SL) and the formation of strong
counter-rotating vortex pairs after the collision and subsequent
detachement of slip lines, as well as preserve symmetry. On
the other hand, when the LAD approach is used to solve the
current test case, a high level of spurious oscillations was ob-
served. Additionally, an early symmetry breaking behavior
is present. Similar post shock oscillations were reported to
be a numerical challenge during in the analysis performed in
Lodato et al. (2017).

DEMONSTRATING QSV’S SUBFILTER SCALE
(SFS) TURBULENCE MODELING CAPABILITY

The complete QSV closure relations (9) - (10) for the fil-
tered compressible Navier-Stokes are now tested by assessing
their capability of modeling the energy flux from large to small
scales in a three-dimensional turbulence problem. The evolu-
tion of a Taylor-Green vortex (TGV) is studied via a priori and
a posteriori analyses.

The latter consists in comparing the result of a coarse sim-

ulation started from the initial conditions against a reference
solution, in this case a Direct Numerical Simulation (DNS)
and is shown hereafter. The prior was the source of valuable
information regarding the coefficients used in the QSV closure
and it is gathered in Sousa & Scalo (2022b).

The subsonic TGV test case is initialized in a cubic do-
main Ω P r´πL,πLs3 with a Reynolds number Re“ ρ0V0L{µ0
equal to 5000 and a Mach number Mt “ 0.1. This choice
avoids compressibility effects with the objective to focus only
on QSV’s performance when applied to hydrodynamic turbu-
lence.

An a posteriori study is performed with 963 grid points,
comparing the QSV model, the Smagorinsky model (SMAG),
the Dynamic procedure (DYN) and the Coherent vorticity Pre-
serving (CvP) method against the DNS sharp-spectrally fil-
tered down to the LES grid resolution. Details on the imple-
mentation of the latter method, such as constants and test filter
strength, can be found in Chapelier et al. (2018).

The state of the turbulence of the different TGV simu-
lations is monitored by analyzing the evolution of volume-
averaged kinetic energy, Ekin “ x

1
2 ρu2y, and its dissipation

rate, defined as, εkin “ ´
BEkin

Bt , with results gathered in fig-
ure 3. It can be observed that simulating a Mt “ 0.1 TGV
flow with 963 points without any turbulence model leads to a
numerically unstable run. In the absence of a model, εkin be-
comes positive around tV0{L « 10, indicating a spurious gen-
eration of kinetic energy, ultimately leading to diverging nu-
merical results. Nonetheless, the results without the addition
of extra dissipation to account for the energy flux to subfilter
scales can be used to assess the performance of SFS models in
the early stages of the simulation, when only large scales exist
and the models should be inactive.

In figure 3, a zoomed region focused on the period
tV0{L“ 0´5 shows that all the models considered, apart from
the plain Smagorinsky model, are able to mitigate the addition
of excess dissipation in the early stages of the flow, follow-
ing both filtered DNS and no-model results closely. The over
attenuation induced by the plain Smagorinsky model persists
as the flow develops and ends up leading to a smaller dissi-
pation peak, in comparison with the other models considered.
Furthermore, QSV’s results, when compared to ones obtained
via DYN or CvP, are closer to the filtered DNS results from
tV0{L « 6 onwards, introducing a slight over dampening in
the prior period. Similar levels for the peak in εkin are recov-
ered for these three models but, only the QSV-based results
recover the dissipation plateau existent in the DNS results af-
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a) b)

Figure 3. Evolution of volume-averaged kinetic energy (a) and dissipation (b) of the LES of the Taylor-Green Vortex with initial
amplitude of Mt “ 0.1. Different subfilter models are shown and compared against sharp spectral filtered DNS data up to the same grid
resolution.

ter its peak.

QSV AS A UNIFIED APPROACH FOR TURBU-
LENCE MODELING AND SHOCK CAPTURING

After having established the capability of the QSV model
to act separately as a shock capturing and a SFS turbulence
modeling closure, we now test a case exhibiting shock-wave
turbulence interaction such as a supersonic TGV flow with
initial Mach number Mt “ 1.2. At this level, the initial per-
turbations rapidly induce wave steepening and shocks in the
solution before the initial vortex breaks down into turbulence
and the hydrodynamics start to govern the flow. The objective
of this test case is to assess how the different models cope with
the presence of both shocks and turbulence in the simultane-
ously.

To study the evolution of a supersonic TGV, an exact
compressible energy norm (Myers, 1991) that accounts for en-
ergy stored in both hydrodynamic and thermodynamic fields
is used. As in the subsonic TGV case, the exact compressible
norm can be volume-averaged,

Ec “ xρph´h0q`
1
2

ρu2´ρT0ps´ s0q´pp´ p0qy, (15)

and its dissipation rate can be determined by a time derivative
as εc “´

BEc
Bt .

Again, an a posteriori study is performed with 963 grid
points, comparing the QSV model and various eddy viscosity
methods when augmented by the addition of the LAD shock
capturing approach against a QSV-based Mt “ 1.2 TGV simu-
lation with 3843 grid points, used here as a reference solution
since the presence of a shock in the flow field renders a DNS
is not strictly possible. In Sousa & Scalo (2022b), though, it
is shown that the solution is essentially converged at that reso-
lution level. Additionally, if the current test case is simulated
without the inclusion of a shock capturing approach, it leads
to numerical instabilities regardless of the turbulence model
considered (Sousa & Scalo, 2022b).

The results from such a posteriori analysis are gathered
in figure 4. The base formulation of the LAD model (Kawai
et al., 2010) induces the addition of artificial dynamic viscos-
ity (µart), which ultimately contributes to the stabilization of
the run performed with LAD as the only active model. The
results from the LAD model are the most inaccurate and be-
come unstable if µart is deactivated and only the artificial bulk
viscosity and artificial conductivity components are active.

Despite achieving numerical stability, all the LAD-aided
runs overestimate the dissipation rate around tV0{L« 6.5, dur-
ing the presence of the largest shock discontinuities in the flow,
and underestimate the dissipation rate peak, in comparison
with the reference results. In comparison with the LAD-aided
turbulence models, the QSV-obtained curve remains closest
to the reference results throughout the whole evolution of the
flow, introducing less dissipation in the shock-dominated pe-
riod and predicting better the magnitude of the dissipation
rate peak. Additionally, it can be observed that, in the initial
stages of the flow, when only large scales are present QSV is
the model that is closest to the reference results, showcasing
its ability to dynamically modulate the added SFS dissipation
magnitude.

These results ultimately support the claim that the pro-
posed QSV model is a genuine unified approach for turbulence
modeling and shock capturing. On top of being able to per-
form each task separately, it outperforms the simple addition
of separate turbulence and shock capturing models in flow se-
tups where both hydrodynamic turbulence and shock disconti-
nuities are happening simultaneously.

CONCLUSION
A novel technique named the Quasi-Spectral Viscos-

ity model (QSV), was introduced. It is designed to simulate ac-
curately the large scales present in both shock and turbulence
dominated flows by exploiting the residual of filter transfer
functions to estimate both the amplitude of fluctuations near
the grid cutoff and modulate the viscosity magnitude for dif-
ferent wavenumbers. This feature allows for an implementa-
tion using only spatial operators, applicable to finite-difference
solvers.

The QSV mathematical framework is based on an exten-
sion of LES closures and a parallel between these and spectral
vanishing viscosity (SVV) based models. The 1D Burgers’
problem is used to showcase the connection between previ-
ous LES models and how they can be understood as a way
of solving shock dominated solutions. Moving forward, the
QSV model was shown to perform well in both low-speed
and highly compressible flow setups. For example, the same
QSV framework can be used to solve a Taylor-Green Vortex
with both sub and supersonic initial conditions. Moreover, the
QSV model is flexible, being able to be applied in curved and
stretched domains by using grid transformations. The collec-
tion of satisfactory results across intrinsically different flow
setups supports the claim that the QSV method can simultane-
ously capture shocks and act as a subfilter turbulent closure.
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Figure 4. Evolution of the volume-averaged exact compressible energy norm (a) and its dissipation rate (b) in a Mt “ 1.2 TGV
simulation. Results obtained by different sub-filter models using 963 grid points are compared against a reference solution computed
using QSV model with 3843 points.

As a final remark, although the current implementation is
aimed at finite-difference solvers, it is possible to extend the
QSV approach to unstructured solvers based on spectral nu-
merics. Due to the opportunity of projecting the solution of
each element onto a hierarchical set of orthogonal basis func-
tions, a spectrally based implementation would be able to eas-
ily gage the magnitude the energy near the cutoff and would
be able to modulate freely the amplitude of the viscosity ker-
nel for different wavenumbers. This fact renders the use of
global filtering operations unnecessary and could lead to sim-
pler and more flexible implementations. An initial implemen-
tation of a shock capturing method that exploits the Legendre
basis in discontinuous flux reconstruction settings was intro-
duced in Sousa & Scalo (2022a). Its extension to turbulence
and shock/turbulence interaction modeling will be explored in
future research.
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