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ABSTRACT
In this work a new method of passive drag reduction on

bluff bodies by tessellation is presented. Wind-tunnel mea-
surements on tessellated spheres reveal that the variation of the
drag coefficient is similar to dimpled spheres, manifested by a
sudden decrease in the drag coefficient at a critical Reynolds
number followed by a nearly constant drag value in the post-
critical regime. However, tessellated spheres can achieve a
further 10%-15% drag reduction compared to dimples without
shifting the critical Reynolds number. To further investigate
the underlying physics leading to this reduction we also con-
ducted Direct Numerical Simulations of both tessellated and
dimpled spheres at Re = 1.50× 105. The predicted values of
drag coefficient agree very well with the experiments and con-
firm the drag reduction. Analysis of the flow reveals that the
tessellated panels introduce a smaller pressure ”penalty” com-
pared to dimples at the front part of the body. In addition,
transition to turbulence occurs later and near the top of the
body. As a result the boundary layer grows thinner and global
separation is delayed by approximately 10◦.

INTRODUCTION
Passive roughness elements such as trip wires, dimples,

protrusions of different shapes, etc. are effective in reducing
the drag force on bluff (i.e. sphere, cylinder) as well as stream-
lined (i.e. airfoils) bodies. Among the different types of ele-
ments dimples are very efficient in maintaining the low drag
configuration for a large range of Reynolds numbers. An ex-
ample is shown in Fig. 1, where the variation of the drag coef-
ficient, CD = 2FD/ρU∞

2A, as a function of Reynolds number,
Re =U∞D/ν , (FD is the drag force, U∞ is the freestream ve-
locity, D the diameter, A the projected area, and ρ , ν the den-
sity and kinematic viscosity of the fluid respectively) is plot-
ted for smooth and dimpled spheres. For the former case the
drag coefficient remains constant (CD ∼ 0.5) until the Reynolds
number approaches a critical value (Re ∼ 3 × 105). At this
point, which is usually referred to as drag crisis, CD decreases

rapidly and hits a minimum, which is an order of magnitude
lower (CD ∼ 0.08). With further increase in the Reynolds num-
ber the flow enters into the post-critical regime characterized
by turbulent boundary layers on the surface of the sphere. In
this regime the drag coefficient rises slowly with increasing
Reynolds number.

In dimpled spheres the drag crisis happens at a much
lower critical Reynolds number (Re < 7× 104 in Fig. 1). The
critical value of the Reynolds number, as well as the attained
minimum drag coefficient in the post-critical regime depend
on the dimple geometry and arrangement. In general as the
total dimple volume is increased the drag crisis is accelerated
and the drag coefficient in the post-critical regime increases.
Note however that the drag coefficient for dimpled spheres
in the post-critical regime is considerably higher than that of
a smooth sphere. To investigate the origin of this behaviour
Beratlis et al. (2019) carried out direct numerical simulations
(DNS) of the flow over a dimpled sphere in the post-critical
regime. By comparing the computed pressure and skin fric-
tion coefficients to that of a smooth sphere they showed that
i) dimples decrease the overall skin friction drag, which recti-
fies the common assumption that dimples typically increase it;
and ii) dimples, despite their small size, incur a local pressure
penalty, which is significant and accounts for the most part of
the difference in drag between a smooth and a dimpled sphere
in the post-critical regime. The above study as well as earlier
experiments in the literature point to the limitations of further
reducing the total drag on a dimpled sphere without lowering
the critical Reynolds number.

In this work we present a new topological configuration
that can achieve a drag reduction of up to 15% compared to
a dimpled sphere without shifting the drag crisis. The modi-
fication is based on the tessellation of the sphere resulting in
spherical polyhedral containing mostly hexagonal and some
pentagonal flat panels. An example of such a sphere is shown
in Fig. 1. The drag on the tessellated spheres is measured by
wind tunnel experiments that show that the low drag configura-
tion is maintained through the post-critical regime. To under-
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stand the flow physics a DNS of one spherical polyhedral and
one dimpled sphere are carried out in the post-critical regime.
Analysis showed that similar to dimples the sharp change in
angle between the flat panels cause local flow separation lead-
ing to the formation of a detached shear layer that becomes un-
stable resulting in the generation of turbulence, which causes
transport of high speed fluid closer to the wall.

METHODOLOGIES
Both wind tunnel experiments and direct numerical sim-

ulations have been carried out. The experiments have been
carried out in an open return wind tunnel at the George Wash-
ington University with a test section of 30cm× 25cm× 70cm
in the spanwise, vertical and streamwise direction respectively
running at speeds between 18-63 m/s. The drag force was
measured using a single component piezoelectric force sen-
sor mounted on a sting on one end and attached to the back of
the spheres on the other end as illustrated in Fig. 2. The sensor
had a diameter of 0.6cm and width of 0.2cm. The sting itself
was attached to a rigid test stand located approximately 20cm
behind the spheres. A very thin piano wire 0.05cm in diame-
ter was wrapped around the sting and securely attached to the
floor of the test section to reduce the vibrations on the spheres.
The models were 3D printed on the Projet 3500 printer and had
a diameter of 6.85cm resulting in a blockage ratio of less than
5%. For validation the drag coefficient of a smooth sphere
in the sub-critical regime (8.0× 104

< Re < 2.2× 105 ) was
measured, and was in agreement to prior experiments in the
literature.

For the numerical simulations the Navier-Stokes equa-
tions for viscous incompressible flow are solved on a struc-
tured grid in cylindrical coordinates. In the following and un-
less otherwise stated, the letters r, φ , and z denote the radial,
azimuthal and axial coordinates respectively, while θ denotes
the polar angle, going from θ = 0◦ at the stagnation point at the
front of the sphere to θ = 180◦ at wake side. The governing
equations are advanced in time using a semi-implicit projec-
tion method, treating the explicit part with a 3rd order Runge-
Kutta scheme, and the implicit part with a 2nd order Crank-
Nicholson scheme. All spatial derivatives are discretized us-
ing second-order central-differences on a staggered grid. To
overcome the severe time step limitation imposed by the na-
ture of the cylindrical coordinate grid, the viscous and convec-
tive terms are treated implicitly in the azimuthal direction, near
the centerline, and in the radial direction near the top of the
sphere. The pressure Poisson equation, which enables the pro-
jection of the predicted velocity into a divergence-free field,
is solved using a direct solver based on a divide-and-concur
strategy. All geometrical configurations considered here are
represented by a Lagrangian grid consisting of triangular ele-
ments. The requirement for the Eulerian grid to conform to the
body is relaxed, and the non-slip boundary conditions are im-
posed using the immersed-boundary formulation proposed by
Yang & Balaras (2006). The resulting formulation is 2nd-order
accurate both in space and time. An extensive validation on
practical flow problems over a wide range of Reynolds num-
bers can be found in Balaras et al. (2015); Posa et al. (2011,
2015); Posa & Balaras (2016); Rahromostaqim et al. (2016);
Pal et al. (2017); Posa & Balaras (2018). The code is paral-
lelized using a domain decomposition approach in the stream-
wise direction, where all communication between processors
is handled utilizing Message Passing Interface (MPI) library
calls.

The computational domain extends 10D upstream and

Table 1. Summary of the computations

Name V/Vs A f /A fs CD(DNS)
Dimpled 0.989 0.990 0.188

Poly192 0.979 0.986 0.155

Poly162 0.973 0.982 0.178

30D downstream of the sphere (the center of the sphere is lo-
cated at r/D= 0, z/D= 0, where r and z are the radial and axial
coordinates respectively). The computational grid consists of
1100× 3002× 3002 points in the radial, azimuthal and axial
directions respectively. The grid resolution is very similar to
the one used in DNS of the flow over a dimpled sphere by Be-
ratlis et al. (2019), which is sufficient to resolve the dominant
flow structures near the wall as well as in the near wake. The
Reynolds number was set to Re = 1.5× 105. Approximately
1 flow-through time was required for the solution to become
independent of the initial conditions. After that statistics were
accumulated over 2.5 flow-through times. In the following and
for a generic flow variable the lower case, β , represents an in-
stantaneous quantity, the upper case, B, represents the variable
averaged over time only, β

′ represent the instantaneous fluc-
tuations for the time-averaged quantity, and B, represents the
variable averaged over both time and azimuthal direction.

DISCUSSION
Fig.1 shows the variation of the drag coefficient with

Reynolds number measured in the wind tunnel for one dim-
pled sphere and for two polyhedral spheres, one with 162 and
192 polygonal panels (referred to from now on as poly162 and
poly192 respectively). Some basic geometrical properties are
listed in Table 1. The dimpled sphere contains 312 spherical
dimples, with an average diameter, d = 0.095D, and maximum
depth k = 0.003D. The resulting dimple coverage, which is
the ratio of the surface area occupied by the dimples to the
total surface of a sphere, is approximately 70%. The geome-
try is representative of a commercial golf ball. The dimpled
sphere has the largest volume of the three, about 0.989 of that
of a sphere with D = 1, followed by poly192 and poly162.
The ratio of frontal area to that of a smooth sphere is also very
close to 1 for all spheres, with the dimpled sphere, poly192 and
poly162 being 0.990, 0.986 and 0.982 respectively. Therefore
the reduction in the drag coefficient exhibited by the above
polyhedral and shown next can not be attributed to changes in
the frontal area.

The drag curves for the polyhedral and dimpled spheres
are very similar, with the polyhedral exhibiting a drag crisis
around Re ∼ 8×104 and maintaining the low drag in the post-
critical regime. In general, as the number of polygonal pan-
els increases, the polyhedral approaches a smooth sphere and
the drag crisis shifts towards higher Reynolds numbers while
the drag coefficient in the post-critical regime decreases. It
is important to note that the drag crisis for poly192 appears
to be occurring at the same critical Reynolds number as the
dimpled sphere but the drag coefficient is consistently lower
by 10% − 15% throughout the post-critical regime. For the
poly162 the drag coefficient in the post-critical regime is al-
most identical to that of the dimpled sphere but the drag crisis
occurs earlier. The predicted drag coefficient from the present
DNS for poly192 and the dimpled sphere are also shown in the
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Figure 1. Drag coefficient vs Reynolds number for various spheres. smooth sphere Achenbach (1972);
dimpled sphere with dimple depth k = 0.0035D (present experiment); dimpled sphere with k = 0.003D (present
experiment); icosahedral sphere with 192 polygonal panels (present experiment); icosahedral with 162
polygonal panels (present experiment); • icosahedral with 192 polygonal panels (present DNS); • icosahedral with 162
polygonal panels (present DNS); • dimpled sphere with k = 0.003D (present DNS).

Figure 2. Wind tunnel setup for measuring the drag force

plot. The agreement with the experimental results is very good
with the DNS values are within 2-3% of the experiments. The
drag coefficient for the dimpled sphere is 0.185, while that for
poly192 is 0155 (16% lower).

It is clear from the behaviour of the force coefficients that
the polyhedral designs are more efficient in reducing the drag
than the dimples. To better understand this behavior we will
compare the results from the corresponding DNS. Fig. 3 shows
contours of the time-averaged skin friction coefficient, C f , for
the dimpled sphere and poly192. The skin friction was cal-
culated as, C f = 2ν/U2 ⋅ dUt/dn, where Ut is the tangential
velocity minus the azimuthal component and n is the surface
normal. The separation line is indicated by a black line and the
polar angle θ measured from the stagnation point at the front
is denoted by vertical dashed lines. For the dimpled sphere the
flow separates locally inside some dimples as early as 50◦ and
remains attached at the next row of dimples. Small local sep-
aration bubbles are again observed at 70◦ and they appear to
be present more consistently in the azimuthal direction. Larger
local separation bubbles occupying the first half of the dimples
occur at the next row of dimples around θ = 80◦. For poly192
the behavior of the skin friction is very different. A couple
of small separation bubbles appear around θ = 80◦ and more
consistently in the azimuthal direction around θ = 90◦

Fig. 4a shows the skin friction coefficient, C f , averaged
over time and the azimuthal direction. The average surface
depth distribution k/D is also plotted at the bottom. The depth
is measured relative to the surface of a smooth sphere of di-

ameter D. For the case of the dimpled sphere k/D exhibits
considerable variation while for poly192 it is more uniform
and also consistently higher. For the former, C f exhibits local
peaks and valleys consistent with the presence of the dimples,
while for poly192 it is considerably smoother. Global sepa-
ration, identified as the cross from positive to negative values
of C f , occurs at θ = 116◦ and θ = 126◦ for the dimpled and
polyhedral spheres respectively. The integral of the skin fric-
tion as a function of θ is shown in Fig. 4b. When the integral is
evaluated over the entire sphere it is equal to the skin friction
drag. In the front part of both spheres (θ < 45◦) the integral of
the skin friction is very similar. For θ > 45◦ the skin friction
drag for the tessellated sphere is slightly larger than that of the
dimpled sphere. This is expected since for poly192 the flow
remains attached for longer than the dimple sphere. Overall
the skin friction drag for both spheres is less than 10% of the
total drag.

The distribution of the average pressure coefficient, Cp,
together with the average surface depth, k/D, as a function of
θ is shown in Fig. 5a. For poly192, Cp is relatively smooth
while for the dimpled sphere it exhibits small oscillations that
are correlated with the average dimple depth. In particular, the
local peaks in Cp occur slight after local maxima in k/D and
vice versa. At the back of the sphere (90◦ < θ < 125◦) Cp for
poly192 is lower. However due to the delayed separation it re-
covers to a greater value and remains consistently higher than
that of the dimpled sphere. As for C f above, the integral of
Cp as a function of θ is shown in Fig. 5b. For 0◦ < θ < 45◦

the pressure integrals are very close. For θ > 45◦ the dimples
start to incur a small pressure penalty relative to the polygonal
panels. By θ = 90◦ the dimples contribute approximately 30%
of the total drag penalty. At the back the remaining 70% con-
tribution to the additional drag for the dimpled spheres comes
form the lower back pressure due to the earlier separation.

The difference in the separation point between the two
types of spheres can be explained by looking at the evolution
of the boundary layer. First of all, the approximate location
of transition to turbulence can be determined by looking at the
behavior of the velocity fluctuations. Fig. 6 shows the variation
of the turbulent kinetic energy, q, averaged over time and in the
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azimuthal direction. The quantity is plotted along an arc that
has a radius of 0.505D, that is 0.005D above the surface of a
smooth sphere. The points on that arc are shown with markers
in the subset. The levels of q are negligible at the front part for
both spheres and they start to rise around θ = 75◦ and θ = 87◦

for the dimpled sphere and poly192 respectively. It is therefore
reasonable to assume that transition to turbulence is delayed
for the latter case. The location of the peak in q also occurs a
little later but overall the maximum levels of q are similar.

Fig. 7 shows contours of the instantaneous azimuthal vor-
ticity at a plane cutting through the middle of a dimple near
the top of poly192 sphere where transition occurs. Contours
of the instantaneous skin friction coefficient, C f , are plotted
on the surface of the sphere along with the separation line de-
noted by a black line. It is clearly seen that a shear layer is
formed as the flow separates over the leading edge of the flat
hexagonal panel. The flow separation is not uniform across the
span and occurs over a small portion near the first half of the
panel. The flow reattaches again near the center of the panel.
Shortly after the flow separates the shear layer becomes un-

a)
90◦80◦70◦

60◦

50◦
C f Re0.5

b)
C f Re0.5

Figure 3. Contours of the time-average skin friction coeffi-
cient, C f , scaled by Re0.5. a) dimpled sphere; b) poly192. The
separation line is shown with a solid black line while the polar
angle at various locations is indicated by vertical dashed lines.
The red rectangular outline corresponds to the location of the
hexagonal dimple shown in Fig. 7.

C
f

0 50 100 150

0

0.002

0.004

0.006

k
/D

0 50 100 150

0.005

(a)

∫ 
C

f d
A

50 100 150

0

0.005

0.01

0.015

(b)

Figure 4. a) Distribution of the average skin friction coeffi-
cient, C f , (top part) and average surface depth (bottom part);
b) Integral of C f . dimpled sphere; poly192;

difference between dimpled sphere and poly192.

stable and starts to roll-up into vortical structures, annotated
as rollers A and B in the figure. The evolution of these rollers,
which is essential in the transition process, can be better traced
in Fig. 7b, where a top view is shown and the vortical struc-
tures are colored by their streamwise vorticity. It can be seen
that roller A is not uniform in the azimuthal direction and
does not extend across the entire span of panel. A similar be-
haviour can be observed for roller B. As these rollers undergo
instabilities in the azimuthal direction their vorticity is reori-
ented from the azimuthal to the streamwise direction. Also,
in between the two rollers pairs of counter-rotating stream-
wise vortices are present. These vortices are reminiscent of
the braid-vortices containing mainly streamwise vorticity of
opposite sign, typically found in free-shear layers undergoing
Kevin-Helmhotz type instability. Towards the end sides of the
rollers thin elongated vortices aligned in the sreamwise direc-
tion and containing streamwise vorticity are observed. Farther
downstream and close to the trailing edge of the dimple vari-
ous vortical structures resembling a Λ-type vortex are clearly
observed. This pack of Λ-type vortices has evolved from the
continuous bending of a previously shed roller and its legs are
connected to a pair of braid vortices. We should note that the
rollers aligned primarily in the azimuthal direction are trans-
formed into Λ-type vortices always within the length of one
panel for a given Reynolds number. This mechanism is qual-
itatively similar to the one observed for flow over a dimpled
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sphere Beratlis et al. (2019).
To further quantify this, profiles of the time averaged

streamwise velocity and turbulent kinetic energy around θ =

83◦ are shown in Fig. 8. Three stations are selected: one be-
fore, one inside and one after the shear layer where transition
takes place. At the first station the velocity profile and the lack
of turbulent kinetic energy confirms that the boundary layer is
still laminar. In the second station the negative velocity near
the wall indicates the flow and the velocity profile resembles
that of a shear layer. The turbulent kinetic energy has a sharp
peak at approximately r/D = 0.0035 indicating that the shear
layer become unstable. Farther downstream near the trailing
edge of the hexagonal panel the peak in the turbulent kinetic
energy moves closer to the wall, at r/D = 0.017. However the
profile of q is much broader with significant levels of turbulent
kinetic energy extending up to r/D = 0.012. This is character-
istic of momentum transport across the boundary layer.

Fig. 9 shows the average boundary layer thickness, δ , as a
function of the polar angle θ , up to the separation point. Since
the location of the wall varies in the azimuthal direction the
boundary layer thickness is first calculated at each azimuthal
plane, as shown in the insert of Fig. 9. This gives a set of dis-
placement thicknesses δ1 , δ2, ... , δnφ with respect to the local
wall location, which are then averaged over the azimuthal di-
rection φ to give δ . Note that δ is calculated utilizing the vor-
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Figure 5. a) Distribution of the average pressure coefficient
Cp (top part) and average surface depth (bottom part); b) Inte-
gral of Cp. dimpled sphere; poly192;
difference between dimpled sphere and poly192.

0 50 100 150
0

0.05

0.1

0.15

q/
U

2 ∞

θ

Figure 6. Variation of the turbulent kinetic energy, q, along
an arc line with radius R = 0.505D. poly192;
dimpled sphere. The inset on the top left shows contours of q
for poly192 with black dots representing the arc line.
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Figure 7. a) Isosurface of the Q-criterion visualizing vortical
structures near the top of the tesselated sphere. Contours of
the instantaneous azimuthal vorticity, ωθ , are also shown at
an azimuthal plane going through the middle of a hexagonal
panel along with contours of the instantaneous skin friction,
C f , plotted on the surface of poly192. The separation line is
denoted by solid black line. The location of the hexagonal
panel is indicated with a red box in Fig. 3b. b) Top view with
vortical structures colored by contours of tangential vorticity
ωt .

ticity definition proposed by Spalart & Watmuff (1993), which
is more appropriate in the presence of curvature and pressure
gradients. For the dimpled sphere the boundary layer does not
grow in a monotonic fashion, and there are local peaks and val-
leys associated with the presence of the dimples (for reference
the average dimple depth is shown on the lower part of the fig-
ure). The peaks and valleys in δ correspond to the location
of the maximum and minimum dimple depth respectively, and
overall dimples promote a thickening of the boundary layer.
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Figure 8. Top part: Profiles of the time averaged streamwise
velocity U; Bottom part: profiles of the mean turbulent kinetic
energy q. Statistics are shown at three stations along an az-
imuthal plane. The locations of the stations are also indicated
in the figure: A is at θ = 78.5◦, B is at θ = 83◦, C is at θ = 95◦
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Figure 9. Plot of the boundary layer thickness δ averaged
over time and azimuthal direction and average dimple depth
k/D. Lines represent: –; poly192, –; dimpled sphere

For poly192 the boundary layer growth is smoother.

SUMMARY
Dimples have been long considered as an efficient mech-

anism for tripping the boundary layer and reducing drag on
spheres. Previous work by the authors revealed though that
dimples impose a significant pressure penalty which can hin-
der drag reduction. The authors present a novel topological
modification, comprising the tessellation of a sphere, that can
reduce drag even more without changing the Reynolds number
at which the drag crisis occurs.

We report wind tunnel measurements of the drag coeffi-
cient over a range of Reynolds numbers, as well as DNS for
selected cases in the post-critical regime. Dimpled and tessel-
lated spheres are considered. The wind tunnel measurements
demonstrate that the variation of the drag coefficient as a func-
tion of the Reynolds number for the two tessellated sphere
cases is very similar to that of dimpled spheres: drag crisis oc-
curs and the drag coefficient remains relatively constant in the
post-critical regime. As the number of tessellations increases
the drag crisis shifts towards higher Reynolds number and the
value of the drag coefficient in the post-critical regime is re-
duced.

Detailed analysis of the results from the numerical sim-
ulations showed that a tessellated sphere reduces the pressure
penalty compared to dimples while also delaying separation

by 10◦ at the same Reynolds number. Transition to turbu-
lence on a dimpled sphere also occurs closer to the stagnation
point. As a result the boundary layer grows thicker and the
flow separates earlier giving rise to lower back pressure and
higher form-drag.
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