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ABSTRACT
A framework is introduced for accurate estimation of

time-average uncertainties in various types of turbulence
statistics. A thorough set of guidelines is provided to adjust the
different hyperparameters for estimating uncertainty in sample
mean estimators (SMEs). For high-order turbulence statistics,
a novel approach is proposed which avoids any linearization
and preserves all relevant temporal and spatial correlations and
cross-covariances between SMEs. This approach is able to ac-
curately estimate uncertainties in any arbitrary statistical mo-
ment. The usability of the approach is demonstrated by ap-
plying it to data from direct numerical simulation (DNS) of
the turbulent flow over a periodic hill and through a straight
circular pipe.

TIME-AVERAGE UNCERTAINTY
One of the main goals of any turbulent flow simulation

is to compute various flow statistics after the statistically-
stationary condition is achieved. Recent progress in hardware
and software has made the scale-resolving simulations of tur-
bulent flows more accessible. However, any such simulation
can only be run for a finite time; therefore, the sample mean
estimator (SME) µ̂ = Ê[u] for computing the time-average of
a turbulent quantity u is uncertain. The SMEs are unbiased,
and by ergodicity and the central limit theorem,

µ̂ ∼ N
(

µ,σ2(µ̂)
)

(1)

where N is a Gaussian distribution with true mean µ = E[u]
and variance σ2(µ̂). The latter is a direct measure of the uncer-
tainty in µ̂ in a single realization of a turbulent flow where the
associated µ cannot be realized. Since the time series of tur-
bulence quantities are highly correlated, for estimating σ2(µ̂)
standard linear unbiased estimators typically used for indepen-
dent and identically distributed (iid) samples are not accurate.
The remedy can be found in the field of uncertainty quantifica-
tion (UQ) where the tools for estimating σ2(µ̂) for autocorre-
lated time samples can be divided into two main categories:

1. Batch-based methods, which are based on batching the
time series and acting on the batch means, examples are non-
overlapping/overlapping batch means (NOBM/OBM) meth-
ods and batch-means and batch-correlations method (BMBC)
introduced by Russo & Luchini (2017). 2. Autocorrelation-
function (ACF)-based estimators, which rely on evaluating the
exact analytical expression for σ2(µ̂):

σ
2(µ̂) =

1
n

[
γ0 +2

n−1

∑
k=1

(
1− k

n

)
γk

]
, (2)

where γk = E[(ui − µ̂)(ui+k − µ̂)] is the autocovariance for the
statistically-stationary sequence {ui}n

i=1 at k = 0,1,2, . . . time
lags. As it can be inferred from Eq. (2), for a given number of
samples two main factors which can give rise to the variance of
an SME are the large variance of time series and the slow de-
cay of the autocorrelation γ(k)/γ(0). These two factors can be
large either due to the physics of turbulence or numerical arti-
facts. An illustration of the latter can be found in Rezaeiravesh
et al. (2022), where it was shown that the spatial location along
the profile of a turbulence quantity where the sensitivity with
respect to the numerical parameters is high, the time-average
uncertainty can be large as well.

The main barrier to accurate estimation of σ2(µ̂) via
Eq. (2) is the oscillations in the sample-estimated autoco-
variances γ̂(k) at large lags. As first shown by Oliver et al.
(2014), autoregressive models (ARM) are suitable for con-
structing smooth models for the ACF in turbulent flows (here-
after, ARM-based uncertainty estimator). An alternative to
constructing an ARM is to fit an ad-hoc function to sample
ACF, see e.g. Gscheidle et al. (2022). In our recent study,
Xavier et al. (2022), the performance of various estimators
with respect to associated hyperparameters was thoroughly in-
vestigated for wall turbulence. For batch-based variance esti-
mators, the hyperparameter is the batch size, and we observed
that for the NOBM, it could be determined from the lag-1 tem-
poral correlation of the batch means. For the BMBC estimator,
the lag-2 and lag-1 correlations of the batch means are both
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needed for optimal estimation of batch size and hence accu-
rate estimation of σ2(µ̂). For modeled-ACF-based estimators,
it is shown that the order of the ARM could be obtained from
the turbulence integral time scale, without the need for any
mathematical order selection criteria. By constraining the hy-
perparameters using integral quantities (such as eddy turnover
times), guidelines were derived by Xavier et al. (2022) for ac-
curate estimation of uncertainty in SMEs of primitive variables
in turbulent flows.

HIGH-ORDER & NONLINEAR STATISTICS
The methods reviewed in the previous section can only be

applied to estimate uncertainty in a single sample mean esti-
mator. But, turbulence statistics include higher-order moments
of primitive variables, nonlinear terms and different budget
terms in the transport equations of Reynolds-stress compo-
nents and turbulent kinetic energy. As outlined in this sec-
tion, the present study proposes a UQ approach to accurately
estimate time-average uncertainty in any turbulence statistics.
Using combinations of arithmetic and differentiation opera-
tors, any of such statistical terms can be written in terms of
the moments of the primitive variables. For instance, the
second-order central moment ⟨u′v′⟩ can be written as ⟨u′v′⟩=
⟨uv⟩ − ⟨u⟩⟨v⟩. Hereafter, we denote a compound statistical
term such as ⟨u′v′⟩ by T which is defined in terms of the first-
order moments M which in this case are M = {⟨u⟩,⟨v⟩,⟨uv⟩}.
In general, decomposition of T in terms of M should be in a
way that the uncertainty in SMEs µ̂µµ = {µ̂1, µ̂2, · · · , µ̂p} which
correspond to the members of M can be estimated by any of
the approaches of the previous section.

The problem to tackle is defined as estimating uncertainty
in T = f (M) where f (·) is a given functional, from estimated
uncertainty in the SMEs of the members of M. Clearly, this
is a UQ forward (uncertainty propagation) problem, (Smith,
2013). For better understanding the features of the proposed
approach, a brief review of the relevant studies for estimating
uncertainty in compound statistics T is given first. The re-
sampling methods exercised by Benedict & Gould (1996) do
not consider the fact that turbulence time-series samples are
autocorrelated; therefore, its resulting uncertainty estimations
can be inaccurate. For the turbulent channel flow, Hoyas &
Jiménez (2008) applied the non-overlapping batch method and
Lee & Moser (2015) employed the ARM-based uncertainty es-
timator. However, these studies do not provide any detail on
how uncertainties in high-order statistics are estimated.

Our proposed UQ approach has a number of distinguish-
ing characteristics. First, all the arithmetic and differentiation
operations corresponding to f (·) are applied in a mathemati-
cally and statistically consistent way while avoiding any ap-
proximation such as linearization. As a key feature, the corre-
lations between different SMEs appearing in a compound term
as well as the spatial correlations in the SMEs are accurately
incorporated. Representing the covariance matrix associated
with SMEs µ̂µµ = {µ̂1, µ̂2, · · · , µ̂p} by ΣΣΣ, Eq. (1) can be gener-
alized as,

µ̂µµ ∼ N (µµµ,ΣΣΣ) , (3)

where the Gaussian distribution is p-variate. The diagonal el-
ements of ΣΣΣ are σ2(µ̂i) for i = 1,2, . . . , p and can be estimated
by any of the methods in the previous section. The estima-
tion of the off-diagonal elements which are the covariance be-
tween the SMEs has, to our knowledge, not been previously
addressed in the literature. For these covariances the follow-

ing exact expression can be derived,

cov(µ̂i, µ̂j) =
1
n

[
γij(0)+

n−1

∑
k=1

(
1− k

n

)(
γij(k)+ γij(−k)

)]
,(4)

where γi j(k) := cov(uil ,ujl+k) is the cross-covariance between
the time-series associated with two quantities ui and u j. Note
that the only symmetry is γi j(k) = γ ji(−k). As a convenience,
if k > 0 in γi j(k), then k is a lead for ui and a lag for u j . Also,
the peak of γi j(k) does not necessarily happen at k = 0. Note
that for i = j, Eq. (4) is reduced to Eq. (2). Similar to Eq. (2),
the sample-estimated values of γi j(±k)/γi j(0) can be oscilla-
tory at high k, therefore, it is necessary to develop methods to
construct models for these cross-covariances which are smooth
functions of leads/lags. This can, in general, be more challeng-
ing compared to the modeling of γ(k) in Eq. (2). An approach
could be using an algebraic function as introduced in Gschei-
dle et al. (2022). A workaround, which can however be less
accurate, is to cut off the summation in (4) at a k above which
the sample-estimated γi j(±k) are oscillatory.

To summarize, the steps of the algorithm for estimating
uncertainty in T = f (M) are the following:

1. Estimate uncertainty in µ̂µµ corresponding to the SMEs of
the members of M using any of the approaches in the pre-
vious section;

2. Estimate the off-diagonal elements of ΣΣΣ from Eq. (4);
3. Using ΣΣΣ and approximating µµµ by µ̂µµ , directly draw N joint

samples from Eq. (3) and estimate T (denoted by T̂ ). Note
that this is a pure Monte Carlo (MC) sampling method for
the UQ forward problem;

4. For sufficiently large N, use sample estimator for mean
and standard-deviation of T̂ . The latter is used to compute
a confidence interval for the mean of T̂ .

The only approximation involved in this algorithm is in step 3,
where µµµ is replaced by µ̂µµ . If the number of time samples for
estimating µ̂µµ is sufficiently high, the potentially induced error
in the estimated variance of T̂ is negligible.

The above algorithm along with various time-average un-
certainty estimators including those in the previous sections
have been implemented in UQit, (Rezaeiravesh et al., 2021)
and will be published as open-source.

VALIDATION OF THE UQ ALGORITHM
The proposed UQ algorithm aims at estimating the uncer-

tainty of the statistics in a single realization of any dynamical
system when the statistically-stationary conditions hold. To
validate the algorithm, its estimated uncertainties in various
statistical terms can be compared to the corresponding ensem-
ble uncertainties obtained from repeating a simulation (multi
realizations). If a simulation is repeated Ne times (Ne is also
called the size of ensemble) while keeping all simulations in-
dependent of each other, then the empirical ensemble mean
and variance of a sample-mean estimation µ̂ are respectively
obtained from the following two expressions:

µe = E[µ̂]≈ 1
Ne

Ne

∑
i=1

µ̂i , (5)

σ
2
e = V[µ̂]≈ 1

Ne

Ne

∑
i=1

(µ̂i −µe)
2 . (6)

Recall that µ̂ is the sample mean estimation of a single-
realization time-series. We can design a model problem which
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can be inexpensively simulated an arbitrary number of times
and for an arbitrary sample size per realization. At the same
time, the samples of such problem need to be autocorrelated
as in a statically-stationary turbulence time-series. In partic-
ular, we consider a first-order vector autoregressive model to
generate samples for two generic variables x and y:

[
xi
yi

]
=

[
a0
b0

]
+

[
a1 a2
b1 b2

][
xi−1
yi−1

]
+

[
εxi

εyi

]
, (7)

where the associated noise samples are chosen to be Gaussian
and correlated:

[εx,εy]
T ∼ N (0,Cε ) , Cε =

[
a2

3 ρε a3b3
ρε a3b3 b2

3

]
.

To ensure the stationarity condition, the model parameters a1,
a2, b1, and b2 should be chosen such that the eigenvalues of
the coefficient matrix in Eq. (7) lie within the unit circle. The
experiments to produce Figure 1 are carried out using a0 to a2
equal to 0.1 ,0.5 ,0.2 and b0 to b2 equal to 0.3 ,0.4 ,0.6. More-
over, a3 = 1, b3 = 2, and ρε = 0.5. Each realization of Eq. (7)
starts from a set of random initial samples for x and y taken
jointly from U [0,1]2, and a total of 2n samples are generated
where the first n samples are discarded for burn-in. Combining
moments of x and y, any arbitrary form of statistical terms can
be created for which the accuracy of the proposed UQ algo-
rithm can be examined.

First, the sample-estimated uncertainty of the SME of the
first-order moment ⟨x⟩ is considered. Figure 1(top) shows the
PDF (probability density function) of σ̂(µ̂x) estimated by the
ARM-based uncertainty estimator which uses Eq. (2). The
PDF contains the empirical σe of Eq. (6), and since the mode
of the PDF is close to σe, the consistency of the ARM-based
uncertainty estimator for ⟨x⟩ is confirmed.

Next, estimation of uncertainty in the central mo-
ments ⟨x′y′⟩ and ⟨x′3⟩ and a nonlinear term

√
⟨x2⟩⟨y⟩, is

considered. For the first two terms, we can compare the
performance of the proposed UQ method with the standard
method. In the standard method any of the uncertainty estima-
tion techniques in the previous section is applied to the sam-
ples of x′y′ = (x− µ̂x)(y− µ̂y) and x′3 = (x− µ̂x)

3. This way,
the uncertainty in µ̂x and µ̂y is ignored. In contrast, the pro-
posed UQ algorithm requires decomposing the SME of ⟨x′y′⟩
as ⟨x′y′⟩ ≈ µxy −µxµy + εµ̂x′y′

, where the uncertainty term is,

εµ̂x′y′
∼ (N (0,σ2

µ̂xy
) − N (0,σ2

µ̂x
)N (0,σ2

µ̂y
)

− µx N (0,σ2
µ̂y
)−µy N (0,σ2

µ̂x
)) .(8)

Therefore, µ̂µµ = {µ̂x, µ̂y, µ̂xy} in Eq. (3). Having estimated el-
ements of ΣΣΣ, expression (8) can be evaluated at any Monte
Carlo sample taken from the multivariate Gaussian distribu-
tion (3). The result of subtraction/addition of correlated Gaus-
sian distributions is still Gaussian. But multiplication of cor-
related Gaussian distributions as for instance in Eq. (8) is not
Gaussian. Therefore, the uncertainty in the sample estimation
of a compound term such as ⟨x′y′⟩ can, in general, be non-
Gaussian. Although it may happen that the nonlinear term
in Eq. (8) is much smaller than the others and hence the re-
sulting distribution of εµ̂x′y′

remains Gaussian. This means
that the distribution of the uncertainty of a compound sta-
tistical term depends on the problem at hand and has to be

evaluated a-posteriori. Similarly, ⟨x′3⟩ can be estimated from
⟨x′3⟩ ≈ µx3 + 2µ3

x − 3µxµx2 + εµ̂x′3
with the associated uncer-

tainty expressed by,

εµ̂x′3
= εµ̂x3 + 2ε

3
µ̂x
−3εµ̂x εµ̂x2 +6µ

2
x εµ̂x +6µxε

2
µ̂x
−

− 3
(

µxεµ̂x2 +µx2 εµ̂x

)
, (9)

with µ̂µµ = [µ̂x, µ̂x2 , µ̂x3 ]T . The two middle plots in Figure 1 rep-
resent the PDF of the uncertainty in ⟨x′y′⟩ and ⟨x′3⟩ estimated
by the proposed and standard UQ methods. For ⟨x′y′⟩ both
UQ techniques lead to similar PDFs which include the empiri-
cal uncertainty estimate. However, for ⟨x′3⟩, only the proposed
algorithm can accurately estimate the sample uncertainty. The
fact that the standard method is only accurate for one of these
considered moments is problem-dependent, but the main con-
clusion is that the proposed algorithm is reliable for estimating
uncertainty in various moments using single realization data.

Aside from potentially inaccurate estimates, the standard
UQ method cannot be applied to many compound statistical
terms, for instance

√
⟨x2⟩⟨y⟩. There is no way to evaluate this

term by applying only one SME unless the term is replaced
by, for instance, ⟨

√
x2y⟩, which is obviously a different sta-

tistical term. In contrast, the proposed method requires nu-
merically evaluating

√
⟨x2⟩⟨y⟩ ≈

√
(µx2 + εµ̂x2 )(µy + εµ̂y) for

a sufficiently large number of MC samples. This is straightfor-
ward, after accurately estimating cov(µ̂x2 , µ̂y). For this term,
the bottom plot in Figure 1 confirms the accuracy of the uncer-
tainty estimated by the proposed method.

APPLICATION TO TURBULENT FLOWS
The proposed UQ algorithm is general and can be applied

to any turbulence statistics. Here, the application to the time
series obtained from two canonical wall-bounded turbulent
flows, the flow over a periodic hill and turbulent pipe flow, is
considered. For these flows, there are respectively one and two
spatially homogeneous directions at which periodic conditions
are applied at each time step during simulation. Represent-
ing spatially-averaged quantities by an overbar, a central mo-
ment, for instance ⟨u′v′⟩, can be approximately decomposed as
⟨uv− uv⟩ = ⟨uv⟩− ⟨uv⟩ which is not, in general, equal to the
standard decomposition ⟨uv⟩− ⟨u⟩⟨v⟩, noting that the covari-
ance (in time) between u and v is not generally zero. This sim-
plification leads to reducing the number of primitive SMEs and
hence the size of ΣΣΣ when computing the uncertainty in central
moments. For the considered flow cases, this approximation is
valid because of having relatively long periodic directions with
large number of grid points which result in low uncertainty in
spatially-averaged quantities. Note that the standard decom-
position can also be treated with the proposed approach which
is however not shown here due to brevity.

In all cases discussed below, the uncertainty in the SMEs
of the primitive variables is estimated by an ARM method, see
Oliver et al. (2014); Xavier et al. (2022). The steps to estimate
uncertainty are the same as those explained in the previous sec-
tions and applied to the model problem. A main characteristic
of turbulence signals is, however, that the autocorrelations as
well as cross-correlations decay much slower than the model
problem considered above. This reflects the long history ef-
fects in turbulent flows. Moreover, such correlations depend
on the variables and spatial location. Thus, careful monitoring
of the modeling of the autocorrelations and cross-covariances
when using Eqs. (2) and (4), is essential.
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Figure 1. From top to bottom: PDFs of sample-estimated
uncertainty of ⟨x⟩, ⟨x′y′⟩, ⟨x′3⟩, and

√
⟨x2⟩⟨y⟩ obtained from

the proposed and standard methods compared to the associated
empirical uncertainty by Eq. (6) (vertical line). The uncertain-
ties are computed based on Ne = 104 repetitions of system (7)
with sample size n = 50000 per realization. The uncertainty in
the primitive SMEs (diagonal elements of ΣΣΣ) are estimated by
the ARM-based estimator. The off-diagonal elements of ΣΣΣ are
estimated from Eq. (4) using modeled γi j(±k).

Flow Over a Periodic Hill
The periodic-hill case is chosen because of its complex-

ity owing to the inherent physical uncertainty in the separated
region behind the first hill. The bulk Reynolds number is
Reb = Ubh/ν = 2800 where Ub is the bulk velocity, h is the
height of the hill, and ν is the kinematic viscosity. The simula-
tion is performed using the high-order spectral-element solver,
Nek5000 (Fischer et al., 2008), based on 9th-order polyno-
mial basis approximations per element in each of the spatial
directions. Figure 2 shows the 95% confidence intervals for
the time-averaged streamwise velocity ⟨u⟩ and the Reynolds-
stress component ⟨u′u′⟩ at three streamwise locations, x/h= 2,
4, and 6, for averaging over 44 flow-through times. Reference
data by Breuer et al. (2009) are also included. Interestingly,
the region with the separated flow i.e. x/h = 2 has a lower un-
certainty in ⟨u⟩ compared to the downstream locations. This
is because the autoregressive model can exactly model finite
temporal correlations embedded within the time series of the
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Figure 2. Contours and profiles of ⟨u⟩/Ub and ⟨u′u′⟩/U2
b of

the flow over a periodic hill at Reb = 2800. The profiles are
taken at x/h= 2, 4, 6 (vertical lines in the contour plots) where
solid lines represent the expected value and shaded areas show
95% confidence intervals (CIs). Note that the CIs of ⟨u⟩/Ub
are multiplied by 3 for better visibility. The profiles with the
dotted lines represent the DNS of Breuer et al. (2009).

large separation bubble occurring behind the first hill. The
uncertainty in the high-order statistics also reflects this obser-
vation. At each of the three streamwise locations, the largest
uncertainty in ⟨u′u′⟩ is observed at the peak near the bottom
wall. This location is where the shear flow originating from
the top of the first hill is developed.

Turbulent Pipe Flow
The second case we considered is turbulent flow in a

smooth straight pipe of circular cross-section. The direct nu-
merical simulation (DNS) of the Navier–Stokes equations is
conducted using the open-source code “OPENPIPEFLOW”,
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Table 1. Grid resolution parameters for DNS of turbulent
pipe flow at Reb = 5300.

Nr×Nθ ×Nz ∆r+ ∆(Rθ)+ ∆z+

192×256×1024 (0.02-2) 4.4 5.5

which is a specific solver developed for pipe flows using
Fourier-finite-difference methods (Willis, 2017). The bulk
Reynolds number Reb = 2UbR/ν is chosen to be 5300, and
the corresponding friction Reynolds number (Reτ ≡ ⟨uτ ⟩R/ν

with ⟨uτ ⟩ = (⟨τw⟩/ρ)1/2 the friction velocity) is 181.95,
where ρ , ν , and R are the fluid density, kinematic viscosity,
and pipe radius, respectively. In what follows, the radial, az-
imuthal, and axial directions are represented by r, θ , and z,
respectively, and · denotes averaging over θ and z. The pipe
length Lz/R is 10π and the details of the spatial resolutions are
summarized in Table 1. Note that this low Reynolds number is
chosen here only for illustration purposes, and we have already
obtained data at higher Reynolds numbers up to Reτ = 5200
(Yao et al., 2021), where the current UQ analyses are applied
as well.

Figure 3 shows the the 95% confidence intervals for the
first- and second-order velocity moments. All the quantities
are inner scaled using the time-averaged wall friction veloc-
ity ⟨uτ ⟩ and the viscous length scale ν/⟨uτ ⟩. One of the strong
points of the proposed UQ approach is the possibility of ac-
curately including the uncertainty in moments of wall-friction
velocity uτ when computing uncertainty in inner-scaled quan-
tities. For instance, an inner-scaled Reynolds-stress compo-
nent reads as,

⟨u′iu′j⟩+ =
⟨u′iu′j⟩
⟨uτ ⟩2 ≈

µu′iu
′
j
+ εµ̂u′iu′j

(µuτ
+ εµ̂uτ

)2 . (10)

Having µ̂µµ = {µ̂u′iu
′
j
, µ̂uτ

} and associated covariance matrix ΣΣΣ

estimated, the right-hand-side of the above expression can
be evaluated. As expected, in Figure 3 the uncertainty for
⟨uz⟩+ is large near the pipe center. In addition, it turns out
that compared to other Reynolds-stress components, the un-
certainty is relatively large for ⟨u′zu′z⟩+, particularly near the
peak (y+ ≈ 15). Also note that the uncertainty varies between
the Reynolds-stress components.

In a similar way, the uncertainty in higher-order velocity
moments and any compound term can be estimated. Figure 4
illustrates the uncertainty in the profiles of skewness(uz) =
⟨u′3z ⟩/⟨u′2z ⟩3/2 and kurtosis(uz) = ⟨u′z4⟩/⟨u′z2⟩2. As expected,
by increasing the order of a central moment, the uncertainty
can increase, compare the uncertainties in kurtosis(uz) and the
Reynolds-stress components. In fact, for y+ ≲ 3, the uncer-
tainty for kurtosis(uz) is considerable. For both terms in Fig-
ure 4, an increase in the uncertainty is captured at y+ ≈ 140.
The contribution of each primitive moment to the uncertainty
of a compound term can be quantified in the future using elab-
orate UQ techniques.

The uncertainty in various budget terms in the transport
equations of the Reynolds stresses and turbulent kinetic en-
ergy can also be computed. The transport equation for the
Reynolds-stress component ⟨u′iu′j⟩ in a periodic pipe can be
written as,

D⟨u′iu′j⟩
Dt

= Pi j +T Di j +PDi j +PSi j +V Di j +Di j, (11)

for i, j = 1,2,3, where the successive terms on the right-hand-
side of this equation denote production (P), turbulent diffu-
sion (TD), pressure diffusion (PD), pressure strain (PS), vis-
cous diffusion (VD), and dissipation (D) of ⟨u′iu′j⟩. The def-
inition of these terms can be found, for instance in Moser &
Moin (1984). Estimating the uncertainty in the budget terms
is straightforward after decomposing each term into the mo-
ments to which the UQ estimators described above can be ap-
plied. The only point is about terms having spatial derivatives
of moments. For the specific case of turbulent pipe flow, where
samples are averaged over z and θ before time-averaging, es-
timation of uncertainty in d⟨M⟩/dr is straightforward, noting
the differentiation in r can commute with the time-averaging.
Therefore, it is enough to collect time samples of elements M
during the simulation. This method has the benefit of retaining
the numerical accuracy of the spatial derivatives that is im-
portant especially in higher-order flow solvers. An alternative
would be extending ΣΣΣ to account for covariances in space (as-
sociated to the points in a stencil used for computing spatial
derivatives) between primitive SMEs. Figure 5 shows the un-
certainty in various terms in Eq. (11) for turbulent kinetic en-
ergy (TKE) and ⟨u′ru′z⟩. For the latter, the pressure strain and
diffusion exhibit larger uncertainty compared to other budgets
especially at small y+. At these locations, the expected value
of the mentioned terms also deviate more from the DNS of El
Khoury et al. (2013).

CONCLUSIONS
A framework is introduced for accurately estimating time-

average uncertainty in sample-estimated statistics of turbulent
flow simulations. A set of guidelines connected to the tur-
bulence physics is introduced to adjust the hyperparameters
which control the accuracy of various uncertainty estimators.
For quantifying uncertainties in high-order and general turbu-
lence statistics, a novel UQ algorithm is proposed which takes
into account autocorrelation and cross-covariances in turbu-
lence time-series and associated sample-mean estimators. The
approach shows an excellent accuracy when its sample uncer-
tainty estimations are validated against the ensemble empirical
uncertainties for a model problem. The algorithm is demon-
strated to be general and accurate for various types of statis-
tics, some of which cannot be dealt with using standard uncer-
tainty estimation methods. To illustrate the application in tur-
bulent flow simulations, DNS of two canonical wall-bounded
turbulent flows are considered. A next development step will
include transferring the workflow to the in-situ framework of
Gscheidle et al. (2022). This will result in a set of efficient and
reliable tools for monitoring convergence of various statistics
in large-scale simulations of turbulent flows independent of the
flow solver.
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