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ABSTRACT
This paper presents the application of explorative gradient

method (EGM) (Li et al., 2022) to three open-loop flow control
benchmarks with multiple actuators. The fluidic pinball with
three rotating cylinders, the advanced fluidic pinball with six
rotating cylinders, and the Ahmed body with seven distributed
blowing slots.

The first trial is to minimize the net drag power of the flu-
idic pinball by three rotating cylinders. The net drag power
of the 3-cylinder configuration is reduced by 29%, 52% drag
reduction at a price of 23% actuation energy. The configu-
ration is extended further with 3 more cylinders, which ends
with 14% net drag reduction. The 35◦ slanted Ahmed body
employing distributed steady blowing is included as a more
practical example. 17% drag reduction is achieved in this 10-
dimenional design space.

The boat tailing as an effective strategy is verified in de-
sign spaces with the dimension ranging from 3 to 10. EGM
shows an advantage of tackling high-dimensional optimization
for active flow control by reducing the simulation cost from
O(1000) to O(100).

INTRODUCTION
Actuators and sensors become increasingly cheaper, pow-

erful and reliable. This trend makes active flow control of
increasing interest to industry. In addition, distributed actu-
ation can give rise to performance benefits over single actu-
ator solutions. Here, we focus on the simple case of open-
loop control with steady or periodic operation of multiple ac-
tuators. Even for this simple case, the optimization of actu-
ation constitutes an algorithmic challenge. Often the budget
for optimization is limited to O(100) high fidelity simulations,
like direct numerical simulations (DNS) or large-eddy simula-
tions (LES) or O(100) water tunnel experiments, or O(1000)
Reynolds Averaged Navier-Stokes (RANS) simulations, or a
similar amount of wind-tunnel experiments. Moreover, the op-
timization may need to be performed for multiple operating
conditions. The efficient optimizers are thus of large practical
importance (Blanchard & Sapsis, 2021).

In this paper, this challenge is addressed by a new opti-
mizer, called explorative gradient method (EGM) (Li et al.,
2022). EGM alternatively performs one exploitive downhill
simplex step and an explorative Latin hypercube sampling it-
eration. Thus, the convergence rate of a gradient based method
is guaranteed while, at the same time, better minima are ex-
plored. EGM is found to be two times faster than the Genetic
algorithm (GA) on an analytical function. When applied to
the fuel distribution optimization across the fuel lines, EGM
only spends a quarter of the cost by the Evolutionary algorithm
(EA) (Reumschüssel et al., 2022).

The fluidic pinball (Ishar et al., 2019; Deng et al., 2020)
includes three equal, parallel, equidistantly placed cylinders.
The a two-dimensional flow can be changed by the three ro-
tation velocities of the cylinders. The dynamics is rich in
nonlinear behaviour, yet geometrically simple and physically
interpretable. With suitable rotation of the cylinders many
known wake stabilizing and drag-reducing mechanisms can
be realized: (1) Coanda actuation (Geropp, 1995), (2) circula-
tion control (Magnus effect), (3) base bleed (Wood, 1964), (4)
high-frequency forcing (Thiria et al., 2006), (5) low-frequency
forcing (Glezer et al., 2005) and (6) phasor control (Protas,
2004). In this study, constant rotations are optimized for net
drag power reduction accounting for the actuation energy. This
search space implies the first three mechanisms.

This study also targets the drag reduction of the low-drag
Ahmed body with rear slant angle of 35 degrees. This Ahmed
body simplifies the shape of many cars. Bideaux et al. (2011),
Gilliéron & Kourta (2013) have achieved 20% drag reduction
for this configuration in an experiment. High-frequency blow-
ing was applied orthogonal to the upper corner of the slanted
rear surface. Intriguingly, the maximum drag reduction was
achieved in a narrow range of frequencies and actuation ve-
locities and its effect rapidly deteriorated for slightly changed
parameters. In addition, the actuation is neither Coanda blow-
ing nor an ideal candidate for shear-layer energization as the
authors noted.

The manuscript is organized as follows. The employed
optimization algorithm is first introduced. Then, the configu-
ration and the numerical methods of the three benchmarks fol-
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low. The optimized control commands and the resulted flow
fields are analyzed hereafter. Finally, The outlook is given in
the conclusion.

METHODOLOGY
This study employs the explorative gradient method

(EGM) (Li et al., 2022) as the optimizer for the active flow
control with multiple parameters. This approach alternates be-
tween downhill simplex method (DSM) as a robust gradient
method and Latin hypercube sampling (LHS) as the most ex-
plorative step. The pusedocode is described as algorithm 1.
First, ND + 1 vertices are initialized as the set S for the DSM
operation, after which the S is updated by the best ND +1 pa-
rameters discovered so far. Here, ND is the dimension of the
parameter vector bbb. Then, one sample xxxLLL from the samples
by LHS is selected to test, which is the furthest away from
all hitherto studied data points. If bbbL is better than any of the
simplex vertices, it will replace the worst vertex to formulated
the new simplex set S. The best vertex b∗ is selected from the
latest simplex vertices when the maximum iteration is met.

Algorithm 1: Explorative gradient method
Data: f , Ω, ND, Ni
Result: b∗ = argminb∈Ω f (b)
D,S,YD,YS← InitSamples( f ,Ω,ND +1)
while iter ≤ Ni do

S,YS = DSM( f ,S)
D,YD← S,YS
L = LHS(D)
bbbL = argmax

bbbi∈L
min

bbbi∈L,bbb j∈D

∥∥bbbi−bbb j
∥∥ .

D,YD← bbbL, f (bbbL)
S = sort(YS, f (bbbL),ND +1)

end
b∗ = argminb∈S YS

CONFIGURATIONS & NUMERICAL SETUPS
The optimization goal in this study is to find the global

minimum of the aerodynamic performance target J defined for
different configurations in the design parameter space Ω of the
control input bbb

bbb? = argmin
bbb∈Ω

J(bbb). (1)

Fluidic pinball
The fluidic pinball (Deng et al., 2020) is a benchmark

configuration for wake control. It is geometrically simple yet
rich in nonlinear dynamics behaviours. This configuration
consists of a cluster of three equal, parallel and equidistantly
spaced cylinders pointing in opposite to uniform flow (figure
1a). The wake can be controlled by the cylinder rotation. This
study advance the complexity by adding one more columns
with another three cylinders (figure 1b). The actuation com-
mands bi corresponds to the rotation velocities Ui, where the
positive value denotes the anti-clockwise direction.

Following Cornejo Maceda et al. (2021), we aim to min-
imize of the averaged parasitic drag power J̄a penalizing the
averaged actuation power J̄b. The resulting cost function reads

J̄ = J̄a + J̄b. (2)

The first contribution J̄a = cD corresponds to drag coefficient.
Here, F̄D denotes total averaged drag force on all cylinders
per unit spanwise length. The second contribution arises from
the necessary actuation torque to overcome the skin-friction
resistance. In the subsequent study, the actuation commands
are bounded by 5, i.e, the search space reads

Ω :={ bbb ∈RN : bi ∈ [−5,5] for i = 1, . . . ,N } . (3)

where N is equal to 3 in figure 1a and equal to 6 in figure 1b.
An in-house implicit finite-element method solver

’UNS3’ is employed. It is of third-order accuracy in space and
time. The unstructured grids in figure contain 4225 triangles
(8633 vertices) and 4901 triangles (11063 vertices) separately.
This resolution is sufficient for up to 2 percent error in drag,
lift and Strouhal number.

Ahmed body
The drag reduction of a 1:3-scaled Ahmed body is also

studied. The model is characterized by a slanted edge angle
of α = 35◦. Five groups of steady blowing slot actuators are
deployed on all edges of the rear window and the vertical base,
see figure 11 in Li et al. (2022). The drag coefficient, J = cD, is
computed by RANS (Reynolds-Averaged Navier-Stokes sim-
ulations) with the varying steady blowing as the control input.
The 10-dimensional designed actuation space bbb includes am-
plitudes Ui and directions θi, i = 1, . . . ,5. The former five pa-
rameters are capped by the incoming velocity, and the latter by
π/2.

Ω :=

bbb ∈R10 :
bi ∈ [0,2] for i = 1, . . . ,5
bi ∈ [−35/90,1] for i = 6
bi ∈ [−1,1] for i = 7, . . . ,10

 . (4)

The RANS simulations are based on the realizable k− ε

model. The spatial discretization is based on a second-order
upwind scheme in the form of SIMPLE scheme based on a
pressure-velocity coupling method. The simulations are per-
formed with the commercial flow solver Ansys Fluent. The
prediction of the uncontrolled and controlled cases is validated
by the experiment and LES (Large eddy simulation).

RESULTS
The best control of the fluidic pinball is found after 78

evaluations:

bbb? = (−0.08,1.13,−1.15). (5)

The cost function J? = 1.3 reveals a net drag power saving of
29% with respect to the unforced value Ju = 1.8235. This near-
optimal actuation corresponds to 52% drag reduction, which
requires 23% investment in actuation energy.

The optimization cost increases exponentially with the
complexity added to the 6 cylinders configuration. It takes
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(a) (b)

Figure 1: Fluidic pinball. (a) 3-cylinder configuration and (b) 6-cylinder configuration.

more than 400 evaluations to find the optimum J = 2.457
(Ju = 2.8597), 14% drag reduction, by the control command

bbb? = (0.39,−0.15,1.68,0.05,−0.74,0.09). (6)

Both the best actuation commands mimic nearly symmetric
Coanda forcing with a circumferential velocity of nearly 1 (fig-
ure 2). This actuation deflects the flow towards the positive
x-axis and effectively removes the dead-water region with re-
versal flow. The slight asymmetry of the actuation is not a
bug but a feature of the optimal actuation after the pitchfork
bifurcation at Re2 ≈ 68. This achieved performance and actu-
ation is similar to the optimization feedback control achieved
by machine learning control (Cornejo Maceda et al., 2019),
comprising a slightly asymmetric Coanda actuation with small
phasor control from the front cylinder. Also, the optimized ex-
perimental stabilization of the high-Reynolds number regime
lead to asymmetric steady actuation (Raibaudo et al., 2020).
The asymmetric forcing may be linked to the fact that the un-
stable asymmetric steady Navier-Stokes solutions have a lower
drag than the unstable symmetric solution.

Top Upper side Middle Lower side Bottom
b1 = 0.8611 b2 = 0.9856 b3 = 0.0726 b4 = 1.0089 b5 = 0.8981
θ1 =−27◦ θ2 =−42◦ θ3 = 67◦ θ4 =−44◦ θ5 = 22◦

Table 1: Optimized actuation of the Ahmed body

The optimal actuation command for the Ahmed body
found by EGM (see table 1) leads to 17% drag reduction (cD =
0.2586) compared with the unforced flow (cD = 0.3134). It
takes only 354 RANS evaluations by the subspace-aided strat-
egy. All peripheral actuators are directed inward. The top
and bottom jets have inclinations of 27◦ and 22◦, respectively,
while side jets feature stronger inward angles of 42◦ and 44◦,
respectively. Intriguingly, the additional drag reduction by in-
ward deflection of the jet-slot actuators has also been observed

(a) (b)

(c) (d)

Figure 2: The unforced and optimally controlled wakes
of 3-cylinder (a, b) and 6-cylinder (c, d) fluidic pinball.

for the square-back Ahmed body (Barros et al., 2016). Im-
proved drag reduction with inward as opposed to tangential
blowing was also observed for the 25◦ high-drag Ahmed body
(Zhang et al., 2018) and the square back version (Schmidt
et al., 2015). However, this is the first time the additive ef-
fects by the actuation direction is found on the slanted low-
drag Ahmed body.

Figure 3 shows the streamwise velocity component and
streamlines of the transversal velocity in the same plane for
the unforced and actuated cases. The subfigures colorcode
the pressure coefficient (left) as well as streamwise (middle)
and vertical velocity components (right). The solid circle
marks the furthest downstream extend of the dead-water re-
gion (x,z)DW = argmaxx{u(x,0,z) ≤ 0}. The squares denote
in-plane velocity equilibrium associated with the vortices. The
optimized flow is associated with an increase of the recircula-
tion bubble and a more symmetric wake.

The more the wake is elongated the smaller the pressure
gradient. A larger pressure in the near wake is related to the
lower drag of the bluff body. This is confirmed by the pres-
sure coefficient contours of figure 3 (left). Such correlation
between length of the recirculation bubble and drag reduc-
tion has also been reported in actuated cylinder wakes (Ger-
hard et al., 2003; Thiria et al., 2006). Moreover, the wake be-
comes more slender and symmetric as featured by the velocity
equilibrium points marking the vortex centers (solid squares).
The increased up-down symmetry is facilitated by the upward
blowing of the bottom jet. This peripheral inward blowing
enables aerodynamic boat-tailing (Geropp, 1995) as new ev-
idently more effective drag reduction mechanism. Similar ob-
servation is also reported on the square-back Ahmed body
(Barros et al., 2016; Haffner et al., 2020), and a 25-degree
Ahmed body Rossitto et al. (2016).

CONCLUSION
This paper reports an application study of the newly pro-

posed optimizer — explorative gradient method (EGM). Three
configurations with increasingly complex design space are in-
cluded. Owing to the advantage of EGM over non-convex op-
timization problems, all the optimal solutions are targeted only
at O(100) simulations.

The net drag reduction of fluidic pinball with a 3- and
6-dimensional control space study foreshadows the benefit of
the boat tailing solution by Coanda forcing. Finally, this strat-
egy turns out to be the optimal drag reduction solution in a
10-dimensional design space composed of the steady blowing
actuation for 35◦ Ahmed body.

EGM is not only an efficient but also a versatile optimizer
framework with various future applications. In addition to pa-
rameter optimization, EGM can also be applied to model-free
control law optimization, hitherto performed by genetic pro-
gramming (Gautier et al., 2015; Ren et al., 2020) and deep re-
inforcement learning (Rabault et al., 2019; Bucci et al., 2019).
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Figure 3: Flow visualization of the unforced and optimally controlled Ahmed body wakes in the symmetry plane y = 0.
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