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ABSTRACT 

We describe a rich bifurcation scenario that is related to the 

Nagata steady solution and time-periodic solutions in a plane 

Couette flow with streamwise period slightly longer than the 

minimal unit. We identify the presence of three homoclinic 

bifurcations that are linked with the creation (or destruction) of 

the time-periodic solutions. These periodic orbits function as 

homoclinic orbit to the lower-branch Nagata steady solution 

during homoclinic bifurcation at critical values of Reynolds 

number. In this computational domain, the lower branch of the 

Nagata steady solution acts as edge state at lower Reynolds 

number. At higher Reynolds number, the edge state switches 

from the lower-branch Nagata steady solution to the vigorous 

time-periodic solution during the creation of this limit cycle due 

to the homoclinic bifurcation. As a consequence, the stable 

manifold that forms the boundary which separates the basins of 

attraction of the laminar attractor and the time-periodic/chaotic 

attractor also switches respectively. Thus, the invariant solution 

that can trigger the transition to turbulence follows accordingly 

this switching of the edge state.  

 

 

INTRODUCTION 

Dynamical systems theory has been an invaluable tool in the 

last two decades in providing a theoretical explanation on the 

problem of transition to turbulence happening in wall-bounded 

shear flows (Eckhardt et al., 2007; Eckhardt et al., 2008; 

Kawahara et al., 2012). Transition in shear flows belongs to the 

subcritical category, where it has been found in numerical and 

experimental studies that crossing a threshold of a finite-

amplitude disturbance can promote the transition process at 

Reynolds number below its critical value of linear instability. 

Under dynamical systems theory, the flow under subcritical 

transition category is considered as a system being regulated by 

invariant sets in phase space.  In this context for shear flows, a 

stable invariant set which corresponds to the laminar flow 

coexists with a stable or marginally unstable invariant set which 

corresponds to the chaotic motion (turbulence) in the transitional 

regime. In the middle of these two sets exists an invariant set 

which forms the boundary that separates the basins of attraction 

between the laminar set and the chaotic set. This particular set is 

a saddle-type, which can either be an equilibrium or a time-

periodic, and is often referred to as edge state (Skufca et al., 

2006; Schneider et al., 2008; Vollmer et al., 2009). The edge 

state has a profound property that its stable manifold, which 

includes the edge state itself, forms, at least locally, the laminar-

turbulent boundary. The initial conditions originating within this 

laminar-turbulent boundary will have trajectories that neither 

decay to the laminar nor become turbulent, but will be 

dynamically attracted to the edge state. For a simple edge state 

which has only one unstable direction, applying a strong enough 

perturbation results to a trajectory outside this boundary. As 

such, edge state can become a mechanism for controlling the 

flow (Kawahara, 2005). 

In this paper we describe homoclinic bifurcation that relates 

the Nagata steady solution and the time-periodic solutions in a 

plane Couette flow with slightly longer streamwise period than 

the minimal unit by Kawahara and Kida (2001). An earlier study 

by Ehrenstein and Koch (1995) showed homoclinic bifurcation 

occurring in Blasius boundary-layer flow. They mentioned that 

the homoclinic orbits (Guckenheimer and Holmes, 1983; Palis 

and Takens, 1993; Ott, 2002) that are formed during homoclinic 

bifurcation are often related to intermittent physical bursting, 

which is also what van Veen and Kawahara (2011) suggested 

about the homoclinic orbits to a time-periodic edge state which 

they discovered in minimal plane Couette flow. The Blasius 

boundary-layer flow utilizes the Navier-Stokes equation which 

is simplified within the boundary layer. In contrast, we utilize 

the full Navier-Stokes equation in this study. In the next sections 

we discuss the flow configuration and computational schemes, 

then followed by the bifurcation diagram and their dynamical 

relevance.  

 

 

FLOW CONFIGURATION & NUMERICAL METHODS 

We study plane Couette flow which is considered as flow of 

Newtonian fluid between two parallel plates moving at a 

constant speed 𝑈. The plates are at a 2ℎ distance apart and have 

a no-slip and impermeable surface. The streamwise, wall-

normal, and spanwise coordinates are given as the 𝑥 −, 𝑦 −, and 

𝑧 − directions, respectively, with their origin on the midplane.  

The Reynolds number is defined as 𝑅𝑒 = 𝑈ℎ/𝜈, where 𝜈 is the 

kinematic viscosity of the fluid. Spatial periodicity is imposed 

on the flow in both the 𝑥 − and 𝑧 − directions. The streamwise 

period is given as 𝐿𝑥 = 1.93𝜋ℎ  while the spanwise period is 

given as 𝐿𝑧 = 1.2𝜋ℎ. 
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Figure 1. The bifurcation diagram of the Nagata steady solution in a plane Couette flow with slightly longer streamwise period than the 

minimal unit displayed as the value of the normalized input energy rate 𝐼 as a function of the 𝑅𝑒. Edge states are colored red.  

 

 

We solve the incompressible Navier-Stokes equation using 

a spectral method. The numerical scheme is Crank-Nicolson 

method for the viscous terms and Adams-Bashforth method for 

the nonlinear terms, which is similar to the one used by Kim et 

al. (1987). Chebyshev-polynomial expansion is applied in the 

𝑦 − direction, while dealiased Fourier expansions are employed 

in both the 𝑥 − and 𝑧 − directions. The numerically solved time-

periodic solutions are contained in a subspace that is invariant 

under two spatial symmetries: (a) reflection in the streamwise 

and spanwise directions followed by a spanwise shift of 𝐿𝑧/2, 

and (b) reflection in the midplane followed by a streamwise shift 

of 𝐿𝑥/2. Numerical computations are carried on a resolution of 

16 × 33 × 16 in the 𝑥 −, 𝑦 −, and 𝑧 − directions, respectively. 

Newton-GMRES (generalized minimal residual) method is used 

to compute for both the Nagata steady solution and time-periodic 

solutions, and Arnoldi iteration is used to examine the stability 

of the solutions to infinitesimal disturbance. These numerical 

procedures which use the time-stepping scheme mentioned 

above are essentially the same as what Sánchez et al. (2004) and 

Viswanath (2007) used. Edge-tracking method (Itano and Toh, 

2001; Skufca et al., 2006; Schneider et al., 2008) is applied to 

search for a suitable initial condition to feed into the Newton-

GMRES solver. 

The trajectory of an initial point is determined by computing 

the normalized input and dissipation energy rates per unit time 

given respectively as  
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where 𝑢 is the streamwise component of the velocity and 𝝎 is 

the vorticity vector. 

 

 

BIFURCATION SCENARIO TOWARDS TRANSITION 

TO TURBULENCE 

Figure 1 shows the bifurcation diagram of the Nagata steady 

solution in the plane Couette flow in this study. The Nagata 

steady solution originates from a saddle-node bifurcation at 

𝑅𝑒 ≈ 161.70. The dashed lines denote unstable solution, while 

solid lines denote stable solution. The three time-periodic 

solutions PO1, PO2, and PO3 are plotted using their maxima 

and minima values of 𝐼 in one period and are represented by 

crosses, dots, and inverted open triangles, respectively. The 

location of the three homoclinic bifurcations HB1, HB2, and 

HB3 are shown by the green vertical dashed lines. The lower 

branch of the Nagata steady solution is unstable and has only one 

real unstable eigenvalue, while the upper branch is initially 

stable. Inspection of the eigenvalues reveals that at 𝑅𝑒 ≈ 163.36 

the upper branch becomes unstable, i.e., a Hopf bifurcation 

occurs. A time-periodic solution (black crosses in Figure 1) 

arises from the upper branch of the Nagata steady solution due 

to the Hopf bifurcation. This periodic orbit PO1 disappears due 

to the occurrence of homoclinic bifurcation HB1 at 𝑅𝑒𝐻𝐵1 ≈ 

163.58.  

A new homoclinic bifurcation HB2 occurs at 𝑅𝑒𝐻𝐵2 ≈ 

198.50 and another time-periodic solution (black dots in Figure 

1) appears. This periodic orbit PO2 is initially stable and it 

encounters an instability at 𝑅𝑒 ≈ 219.00 and a period-doubling 

cascade begins. The period-doubling cascade results to a chaotic 

attractor, which encounters a boundary crisis BC at 𝑅𝑒𝐵𝐶 ≈  

238.01. The boundary crisis BC at 𝑅𝑒𝐵𝐶 ≈  238.01 is manifested 

by the contact of the chaotic attractor CA with another time-

periodic solution (red inverted open triangles in Figure 1). This 

vigorous  periodic  orbit  PO3,  which comes in contact with  CA 
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Figure 2. Variation of period 𝑇 of the three time-periodic solutions with respect to 𝑅𝑒 for (a) PO1, (b) PO2, and (c) PO3. 

 

 

 
Figure 3. Approach of the trajectory of (a) PO1, (b) PO2, and (c) PO3 to the trajectory of the lower-branch Nagata steady solution at 𝑅𝑒 

of the encircled points in Figure 2. 

 

 

during BC, appears from a homoclinic bifurcation HB3 at 

𝑅𝑒𝐻𝐵3 ≈ 228.32. The critical Reynolds number for BC is shown 

by the purple vertical dashed line in Figure 1. This period-

doubling cascade that leads to a chaotic attractor and subsequent 

boundary crisis with a time-periodic solution (which is an edge 

state) is reminiscent of similar bifurcation scenario in plane 

Couette flow of different computational domains.  

 

 

HOMOCLINIC BIFURCATION, EDGE STATES, & 

BOUNDARY CRISIS   

A time-periodic solution, which is a limit cycle, appears or 

disappears at the 𝑅𝑒 where the homoclinic bifurcation occurs. 

The periodic orbit appearing during homoclinic bifurcation 

constitutes the homoclinic orbit to the lower-branch Nagata 

steady solution. Near the homoclinic bifurcation the trajectory of 

the periodic orbit that approaches the lower-branch Nagata 

steady solution is extended and goes to infinity as the 𝑅𝑒 for 

homoclinic bifurcation is being approached asymptotically, as 

seen in Figure 2. This monotonic increase in the period 𝑇 of the 

periodic orbits as the 𝑅𝑒  for homoclinic bifurcation is being 

approached is an example of a global bifurcation known as 

infinite-period bifurcation (Strogatz, 1994; Wiggins, 1998). In 

Figure 3, it is shown that this extension of the period 𝑇 near the 

site of the homoclinic bifurcation is the part of the periodic orbit 

trajectory that spends more time during the approach to the 

lower-branch Nagata steady solution. Indeed, as shown in Figure 

4, inspection of the flow structures of these extended parts of the 

periodic orbits at the 𝑅𝑒 encircled in Figure 2 shows striking 

resemblance with the flow structures of the lower-branch Nagata 

steady solution at the same 𝑅𝑒. Figures on the left (a, c, and e) 

are on the extended portions of the trajectory of the periodic 

orbits PO1, PO2, and PO3, respectively, that are approaching 

the lower-branch Nagata steady solution. Figures on the right (b, 

d, and f) are on the lower-branch Nagata steady solution at 𝑅𝑒 

corresponding to those of (a, c, and e), respectively. Gray cor-

rugated isosurfaces of the null of streamwise velocity represent 

streaks. The red and blue isosurfaces of the second invariant of 

a velocity gradient tensor represent clockwise and counter-

clockwise streamwise vortex tubes, respectively. 

Figure 5 illustrates the occurrence of homoclinic bifurcation. 

The black dot is the lower-branch Nagata steady solution, which 

is a fixed point. The light blue and light green lines denote the 

unstable and stable manifolds to the fixed point (saddle-type), 

respectively. For 𝑅𝑒 < 𝑅𝑒𝐻𝐵2  homoclinic bifurcation just not 

occur yet and all trajectories from the fixed point goes to the 

laminar attractor. For 𝑅𝑒 = 𝑅𝑒𝐻𝐵2 , a homoclinic bifurcation 

occurs and PO2, a limit cycle, appears. This limit cycle grows in 

size as 𝑅𝑒𝐻𝐵2 is being approached, yielding an orbit of infinite 

period. This infinite-period orbit actually serves as homoclinic 

orbit to the fixed point. For 𝑅𝑒 > 𝑅𝑒𝐻𝐵2, all trajectories from the 

fixed point are eventually attracted to the limit cycle PO2 that is 

denoted by the dark blue curve. Depending on the direction of 

the appearance of the periodic orbit, either above or below the 

𝑅𝑒 where the homoclinic bifurcation occurs, the trajectories are 

attracted either to the laminar attractor or to the other attractor 
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which is the limit cycle that appears. As such as seen in the 

bifurcation diagram in Figure 1, the occurrences of homoclinic 

bifurcations are associated with the existence of edge state. The 

edge states are indicated with red color in Figure 1. At lower 𝑅𝑒, 

the lower-branch Nagata steady solution serves as the edge state 

between the laminar attractor and the other attractor, which is the 

limit cycle. This means that at lower values of 𝑅𝑒 the steady 

edge state and its stable manifold forms the boundary that 

separates the basins of attraction between the laminar attractor 

and the limit cycle attractor. For 163.36 < 𝑅𝑒 <  163.58, the 

steady edge state and its stable manifold forms the basin 

boundary between the laminar attractor and PO1. For 198.50 <
𝑅𝑒 <  228.32, the steady edge state and its stable manifold forms 

the basin boundary between the laminar attractor and PO2 and 

its subsequent period-doubling branch. Unfortunately, we did 

not find any limit cycle or bifurcation event for 163.58 < 𝑅𝑒 < 

198.50, and so no edge state exists in that range of 𝑅𝑒. 

At higher 𝑅𝑒, we observe a switching of edge states. This 

switching of edge states happens during homoclinic bifurcation 

HB3 at 𝑅𝑒𝐻𝐵3 ≈ 228.32, where the edge state is changed from 

the lower-branch Nagata steady solution to the newly created 

limit cycle PO3 due to HB3. In addition to the creation of the 

vigorous time-periodic solution PO3 during HB3, HB3 also 

serves as a mechanism that triggers the switching of edge states. 

For 228.32 < 𝑅𝑒 <  238.01, this vigorous periodic orbit PO3, 

which is unstable, becomes the edge state between the laminar 

attractor and the period-doubling branch of PO2 that turns 

subsequently into the chaotic attractor CA. As a consequence, 

aside from the edge state switching, the formation of the 

boundary that separates the basins of attraction between the 

laminar attractor and the period-doubling branch of PO2/chaotic 

attractor  CA  also  switches  from  the  steady  edge  state to  this 

vigorous time-periodic edge state PO3 (together with their 

respective stable manifolds) during HB3.  

 

 

  
Figure 4. Visualization of the flow structures of the extended 

portions of the trajectory of the periodic orbits (on the left) and 

the lower-branch Nagata steady solution (on the right) very near 

HB1, HB2, and HB3, from top to bottom respectively.   

 
Figure 5. Sketch of the appearance of homoclinic bifurcation 

HB2 for increasing 𝑅𝑒 in the vicinity of 𝑅𝑒𝐻𝐵2 ≈ 198.50. 

 

 

In Figure 1 we see that during boundary crisis BC at 𝑅𝑒𝐵𝐶 ≈  

238.01 all of the four red inverted open triangles which represent 

the maxima and minima values of PO3 fall onto the black dots 

which represent CA. PO3 is mentioned as a vigorous time-

periodic solution earlier because its 𝐼  and 𝐷  energy values 

sometimes exhibit that of turbulent behavior. Figure 6 shows that 

the trajectory of the chaotic attractor CA comes nearer to the 

time-periodic edge state PO3 in the vicinity of the 𝑅𝑒 of the 

boundary crisis BC, where CA comes in contact with PO3 at 

𝑅𝑒𝐵𝐶 ≈  238.01. The approach is more evident as the distance 

between the minima of CA and PO3 shrinks for increasing 𝑅𝑒 

towards its critical value (see the bottom part of Figure 6a and 

Figure 6b). This shrinking distance is measured quantitatively by 

computing 𝑑 between the minima of CA and PO3 as shown in 

Figure 6 using the quantities below. 

 

 

       𝑑𝐼 =

√∫ [𝐼𝐶𝐴(𝑡 + 𝜏) − 𝐼𝑃𝑂3(𝑡)]2𝑑𝑡
𝑇

0

∫ [𝐼𝐶𝐴(𝑡)]2𝑑𝑡
𝑇

0

                                   (3) 

 

      𝑑𝐷 =

√∫ [𝐷𝐶𝐴(𝑡 + 𝜏) − 𝐷𝑃𝑂3(𝑡)]2𝑑𝑡
𝑇

0

∫ [𝐷𝐶𝐴(𝑡)]2𝑑𝑡
𝑇

0

                                (4) 

 

 

The subscripts CA and PO3 correspond to the chaotic 

attractor and time-periodic edge state, respectively, while 𝑡 

denotes the time period shift that is optimised so that 𝑑𝐼 and 𝑑𝐷 

may be minimal at each 𝑅𝑒. Figure 7 shows that both 𝑑𝐼  (red 

circles) and 𝑑𝐷 (blue circles) becomes smaller and smaller as the 

value of the critical 𝑅𝑒 of boundary crisis is being approached. 

These values of 𝑑𝐼 and 𝑑𝐷 are at the minimum, i.e., closest to 

zero, when the boundary crisis happens at 𝑅𝑒𝐵𝐶. We note that 

this approach is only a partial and not a full one because of the 

inherent instability of the CA and the unstable characteristics of 

PO3. We confirm that there is a time dependence of this 

approach to the local minima of PO3 and that the threshold time 

is short in comparison with the period of PO3. Nevertheless, the 

numerical approach achieved here is sufficient to give evidence 

for the real approach of CA to PO3. 
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Figure 6. Approach of the chaotic attractor CA to the time-

periodic edge state PO3 during the boundary crisis BC.  

 

 

Transient turbulence which eventually relaminarises is seen 

for 𝑅𝑒  above 𝑅𝑒𝐵𝐶 ≈  238.01. Such appearance of transient 

chaotic behavior is associated with the occurrence of boundary 

crisis in chaotic dynamical systems (Ott, 2002; Lai and Tel, 

2011). For other plane Couette flow systems, such transient 

turbulence that eventually relaminarizes was also observed after 

the occurrence of boundary crisis, such as in Kreilos and 

Eckhardt (2012), Shimizu et al. (2014), and Lustro et al. (2019).  

In both of our works in the minimal plane Coutte flow previously 

(Lustro et al., 2019) and in a slightly longer plane Couette flow 

in this study, the boundary crisis is found to be associated with 

the approach of the chaotic attractor with a time-periodic edge 

state. 

The switching of edge states as well as the invariant sets 

which form the boundary that separates the basins of attraction 

between the laminar attractor and the time-periodic/chaotic 

attractor in this study are novel observations on transitional shear 

flows. To our knowledge, these observations are also new 

findings for other chaotic dynamical systems. Both of these 

switching events happen due to the presence of homoclinic 

bifurcation at a critical value of 𝑅𝑒  ( 𝑅𝑒𝐻𝐵3 ≈  228.32). For 

transitional plane Couette flow, it was reported that the structure 

of the basin boundary between the laminar attractor and the 

chaotic set is fractal. Such fractal basin boundary, which is also 

known as edge of chaos (Skufca et al., 2006), is due to the 

bifurcation from a simple, smooth basin boundary. The same 

relationship  between  this  fractal  basin  boundary  and  chaotic 

saddle  formation  has  also  been  reported  in  transitional  plane 

 
Figure 7. A quantitative measure of the approach of the chaotic 

attractor CA to the time-periodic edge state PO3 during the 

boundary crisis BC. 

 

 

Couette flow (Skufca et al., 2006; Kreilos and Eckhardt, 2012; 

Shimizu et al., 2014; Lustro et al., 2019).  

Homoclinic bifurcation is a global bifurcation which occurs 

when a periodic orbit touches the lower-branch Nagata steady 

solution, which is a fixed point. At the homoclinic bifurcation 

point, the periodic orbit takes the role of homoclinic orbit to this 

fixed point. Therefore, this homoclinic orbit to the fixed point is 

not associated to chaotic dynamics, but rather to a limit cycle, 

i.e., the periodic orbit. This lack of chaotic dynamics is due to 

the absence of the transversal intersection of the stable and 

unstable manifolds, i.e., homoclinic orbits, to the fixed point. A 

Shilnikov criteria, i.e., finding a homoclinic orbit that is 

transversal to a plane containing the fixed point must be imposed 

in order to obtain this transversal intersection of the stable and 

unstable manifolds (Guckenheimer and Holmes. 1983; Wiggins,  

1988; Shilnikov, 1970) 

In our recent work in minimal plane Couette flow (Lustro et 

al., 2019), we showed that the onset of transient turbulence that 

eventually relaminarizes happens due to boundary crisis. Such 

boundary crisis is generated by the tangency of homoclinic orbits 

to a time-periodic edge state. Hence, the tangency of homoclinic 

orbits to a time-periodic edge state provides the mechanism for 

the onset of transient turbulence in minimal plane Couette flow. 

This is because of the presence of Smale horseshoe in transversal 

homoclinic orbits following the Smale-Birkhoff theorem in 

chaotic dynamical systems (Guckenheimer and Holmes, 1983; 

Palis and Takens, 1993; Strogatz, 1994; Ott, 2002). This tran-

sient turbulent behavior that is observed in this study after the 

boundary crisis BC may perhaps also be associated with 

homoclinic orbits to the time-periodic edge state PO3, if they 

exist. The finding of such homoclinic obits to PO3 is left for 

future work. 

 

 

CONCLUSION 

We reported homoclinic bifurcations in plane Couette flow 

with slightly longer streamwise period than the minimal unit. 

Three homoclinic bifurcations are shown to be related to the 

appearance or disappearance of their corresponding time-

periodic solutions. At 𝑅𝑒  where the homoclinic bifurcations 

occur, the corresponding periodic orbits function as homoclinic 

orbits to the lower-branch Nagata steady solution. The most 
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energetic of these periodic orbits, which we called the vigorous 

periodic orbit PO3, serves as the edge state between the laminar 

attractor and time-periodic/chaotic attractor at higher values of 

𝑅𝑒 . At lower values of 𝑅𝑒  the lower-branch Nagata steady 

solution serves as the edge state between the laminar attractor 

and time-periodic attractor (limit cycle). The switching of edge 

states from the lower-branch Nagata steady to the vigorous 

periodic orbit PO3 occurs due to the creation of PO3 during 

homoclinic bifurcation HB3. 

The periodic orbit PO2 is initially stable but encounters an 

instability which leads to a period-doubling cascade that later 

becomes a chaotic attractor CA. A boundary crisis happens 

when the chaotic attractor CA touches the periodic edge state 

PO3 at 𝑅𝑒𝐵𝐶 ≈  238.01. For 𝑅𝑒 > 238.01, transient turbulence 

which eventually relaminarizes is observed consistently with the 

previous result for the minimal unit. This boundary crisis has 

been confirmed qualitatively and quantitatively.  

The rich bifurcation scenario presented here for a fluid flow 

system with two kinds of edge states adds to the repertoire of 

dynamical systems approach to understanding the subcritical 

transition to turbulence in shear flows. Finally, the discovery of 

homoclinic bifurcation here is meaningful for bifurcation theory 

as it provides evidence of such event in a system governed by 

the full Navier-Stokes equation. 
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