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ABSTRACT
Turbulent flows over rough and complex surfaces gener-

ally exhibit a similar character to those over smooth walls suf-
ficiently far above the surface (Townsend, 1976). The inner
length and velocity scales for these flows are typically evalu-
ated at the reference height, y∗ = 0, used as the virtual origin to
obtain a smooth-wall-like logarithmic layer. However, recent
studies have reported the loss of this outer-layer similarity in
turbulence over highly obstructing layouts, such as canopies
and permeable substrates (Okazaki et al., 2021; Manes et al.,
2011). In this study, we probe the existence of outer-layer sim-
ilarity for a series of direct numerical simulations of canopies
of varying density. By the assessment of the diagnostic func-
tion of the mean velocity profile, it is shown that as canopy
density decreases, the overlying turbulent flow perceives a
deeper virtual origin into the canopy. Based on the length
and velocity scales provided by the virtual origin, the turbu-
lent flow over the densest canopy with λ f ≈ 2.04 is essentially
smooth-wall-like. However, canopies with λ f ≈ 0.01− 0.91
result in values of Kármán constant, κ ≈ 0.34−0.43, different
from the smooth-wall value, κ ≈ 0.4, while turbulent statistics
are essentially smooth-wall-like in the logarithmic layer and
above. This suggests a modified outer-layer similarity where
κ is not 0.4, but otherwise the canopy flows are outer-layer
similar to a smooth-wall flow.

Introduction
Turbulent boundary layers over rough and complex sur-

faces are ubiquitous and are of significant environmental and
industrial interest (Jiménez, 2004; Finnigan, 2000). Studies
of wall-bounded turbulence have provide the tools for un-
derstanding these rough-wall flows, with engineering models
that treat roughness as a small perturbation to the smooth-
wall boundary layer (Flack et al., 2007; Wu & Christensen,
2007). However, if the roughness-induced perturbation prop-
agates into the outer layer, the scaling based on smooth-wall
similarity could produce erroneous results. Understanding the
extent of roughness effects and whether this smooth-wall sim-
ilarity holds true is therefore of great importance to various

applications.
The surface topology has a direct impact on the flow

within the ’roughness sublayer,’ which can extend up to 2−3
roughness heights or spacings above the roughness crests, de-
pending on the density regime (Jiménez, 2004; Brunet, 2020).
Above this height, it is widely accepted that the turbulence
is essentially undisturbed and exhibits outer-layer similarity
(Clauser, 1954; Townsend, 1976). The only effect is then a
constant shift, ∆U+, in the mean velocity profile, while both
the Kármán constant, κ ≈ 0.4, and the ‘wake’ region are un-
affected. Townsend (1976) proposed the outer-layer similar-
ity hypothesis, articulating that at a sufficiently high Reynolds
number, the turbulent eddies in the outer layer would be essen-
tially unaffected by the surface topology. The surface affects
the flow only through providing the relevant scales, the wall
shear stress, τw, or the friction velocity, uτ = (τw/ρ)1/2, and
the characteristic length scale provided by the distance to the
wall, y. However, whether surface effects extend beyond the
’roughness sublayer’ and into the outer layer is still a topic of
debate as conflicting evidence exists for some surfaces (Wu &
Christensen, 2007; Flack & Schultz, 2010). Experimental and
numerical studies for turbulent flows over porous media car-
ried out by Breugem et al. (2006), Suga et al. (2010), Manes
et al. (2011), and Okazaki et al. (2021) have reported the loss
of outer-layer similarity and values for κ very different from
κ ≈ 0.4 at Reτ ≈ 400−5800, suggesting a more in-depth mod-
ification of the flow by the substrates.

The canonical logarithmic form of the mean velocity pro-
file for a turbulent flow is

U+ =
1
κ

log(y+−∆y+)+A−∆U+, (1)

where κ is the Kármán constant and κ ≈ 0.4 if outer-layer
similarity recovers, A is the log-law intercept for a smooth-
wall flow, ∆U+ is the velocity deficit caused by the substrate,
and ∆y+ is the zero-plane displacement that recovers outer-
layer similarity for the mean velocity profile, U+. However,
recent studies suggest that the scaling for wall turbulence is
essentially local, and is given by the local mean shear and pro-

1



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

(a) (b)

Figure 1. Schematics of (a) the numerical domain and (b) a zoomed cross-section for case D54. An instantaneous realisation of the
streamwise velocity is shown in the orthogonal planes.

duction rate of turbulent kinetic energy, with no explicit refer-
ence to the wall-normal distance (Lozano-Durán & Bae, 2019;
Tuerke & Jiménez, 2013). This implies that the traditional
scaling based on y and uτ happens to hold because of the one-
to-one correspondence between them and the local production
and shear, but this correspondence does not need to hold nec-
essarily for every flow. As part of this work, we have investi-
gated, for flows that exhibit an apparent loss of outer-layer sim-
ilarity, whether the local scale can still have correspondence to
a friction velocity, u⋆τ , and a length scale, y∗ where y∗ is zero
at the height of zero-plane displacement, but u⋆τ is not neces-
sarily evaluated at y∗ = 0. Here, superscript (·)⋆ denotes wall
units defined by ν and u⋆τ decoupled from y∗ = 0, and super-
script (·)∗ denotes wall units defined by ν and u∗τ evaluated at
y∗ = 0. Subscript (·)∗ denotes outer units that are normalised
by the bulk velocity and outer length scale, y∗, measured from
the virtual origin.

The diagnostic function of the mean velocity profile is
(Luchini, 2018)

β (y+∗ ) = y+∗
∂U+

∂y+∗
, (2)

where y+∗ = (y−∆y)+ is the wall-normal distance from the vir-
tual origin at y∗ = 0, which would exhibit a plateau β ≈ 1/κ in
the logarithmic layer, if outer-layer similarity recovered. Many
previous studies rely on the existence of this plateau to deter-
mine the extent of the logarithmic layer and the inner scaling in
flows over roughness (Suga et al., 2010; Breugem et al., 2006).
Particularly, the logarithmic law in Eq.(1) can be recovered
by choosing a ∆y that yields a plateau in (y−∆y)dU/dy with
value u∗τ/κ . The inner velocity and length scales are then de-
termined based on u∗τ evaluated at the reference height, y∗ = 0.
However, a logarithmic layer with a plateau in β emerges
only in a flow at high Reτ . According to numerical evidence,
Reτ ≈ 5200 is not yet high enough for the diagnostic func-
tion of a wall-bounded turbulent flow to exhibit a completely
flat plateau (Lee & Moser, 2015; Yamamoto & Tsuji, 2018;
Luchini, 2018). Additionally, outer-layer similarity, by defi-
nition, refers to the similarity in not just the logarithmic layer
but also the ’wake’ region. For a flow at limited Reτ , neglect-
ing similarity in the ’wake’ region while enforcing a plateau
in the diagnostic function could therefore result in erroneous
predictions of parameters including ∆y, u∗τ , and κ .

In this study, we determine the zero-plane displacement,
∆y, by minimising the deviation of the diagnostic function in
the logarithmic layer and above, compared to that of a smooth-
wall flow at roughly the same Reτ . We assess the validity as
a scaling velocity of the friction velocity both measured at the

Table 1. Simulation parameters: Reτ = uτ δ/ν is the friction
Reynolds number based on δ = 1, the half-channel height, uτ

calculated from the total shear at the canopy tips, and kine-
matic viscosity, ν ; λ f is the frontal density; h and s are the
canopy height and streamwise and spanwise spacing; ∆+

x and
∆+

z are the streamwise and spanwise resolutions; ∆
+
y, f and ∆

+
y,t

are the wall-normal resolutions at the floor and canopy tips.

Case Reτ λ f s/h ∆+
x ∆+

z ∆
+
y, f ∆

+
y,t

S 550.6 - - 9.01 4.50 0.27 -

D36 550.3 2.04 0.33 2.00 2.00 2.95 0.5

D54 550.1 0.91 0.49 3.00 3.00 2.53 0.50

I72 551.9 0.51 0.65 4.01 4.01 2.01 1.00

I108 548.5 0.23 0.98 5.98 2.99 2.00 1.00

I144 547.0 0.13 1.31 5.97 2.98 1.19 1.19

S216 549.0 0.06 1.96 5.99 2.99 1.00 1.00

S288 547.9 0.03 2.62 5.98 2.99 0.79 0.79

S432 548.9 0.01 3.93 5.99 2.99 0.60 0.60

height of zero-plane displacement and set as an independent,
free parameter. With this, we probe the existence of outer-layer
similarity in turbulence over canopies of varying density.

Direct Numerical Simulations
We carry out a series of direct numerical simulations

(DNSs) of closed channels with canopies of rigid filaments
covering the walls at moderate Reynolds numbers (Reτ ≈ 550).
The size of the numerical domain is Lx × Lz × Ly = 2πδ ×
πδ × 2(δ + h), where δ is the half-channel height and h is
the canopy height. We vary the canopy density by chang-
ing the spacing between elements, resulting in frontal densi-
ties, λ f ≈ 0.01−2.04 (Nepf, 2012; Sharma & Garcı́a-Mayoral,
2020a,b). All canopies considered consist of collocated pris-
matic posts with sides l+x = l+z ≈ 24 and height h+ ≈ 110, as
depicted in Figure 1. Relevant simulation parameters are listed
in Table1. Case S is a reference smooth-wall channel. For
the canopy simulations, letters ’D’, ’I’, and ’S’ denote dense,
intermediate, and sparse configurations (Nepf, 2012; Brunet,
2020), and the number that follows denotes the approximate
spacing, s+, between the canopy elements.
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Figure 2. (a) Canopy diagnostics function for case I144 scaled with y∗ and u⋆τ that minimise the r.m.s. deviation from the smooth-wall
profile above a critical height. , smooth-wall statistics at Reτ ≈ 550; , , , canopy statistics based on , ycrit = 0.098;

, ycrit = 0.173; , ycrit = 0.248. The wall-normal coordinate for the shifted profiles is y∗ = (y−∆y)/(1−∆y). (b) , r.m.s.
deviation between βs and βc; , once and twice the baseline error; [ and ], bounds for ycrit . (c) , zero-plane displacement, ∆y;

, height where u⋆τ is evaluated at, yu⋆τ .
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Figure 3. (a) Streamwise r.m.s. velocity fluctuation for case I144 scaled with , u∗τ and , u⋆τ based on ycrit = 0.173. (b)
Logarithmic relationship in Eq.(3) , κc · y⋆∂U⋆/∂y∗; , κc · y+∂U+/∂y+∗ ; , κsβs = 1. In (a) and (b), , smooth-wall
reference statistics at Reτ ≈ 550.

The simulations solve the three-dimensional incompress-
ible turbulent flow in a symmetric channel with rigid canopy
elements attached to both walls, as portrayed in Figure 1. No-
slip and no-penetration boundary conditions are enforced at
both walls. The canopy elements are explicitly resolved using
a direct-forcing, immersed-boundary method (Garcı́a-Mayoral
& Jiménez, 2011). The domain is periodic in the wall-parallel
directions (x, z), which are discretised spectrally. A second-
order central difference scheme on a staggered grid is used in
the wall-normal direction (y), for which the grid is stretched
with ∆+

y ≈ 4.5 at the channel centre. The wall-normal grid
resolutions at the floor and the canopy tips, where mean shear
concentrates, are listed in Table 1. The temporal discretisation
uses a semi-implicit Runge-Kutta, fractional-step method (Le
& Moin, 1991), and the channel is driven by a constant mean
pressure gradient, with viscosity adjusted to obtain Reτ ≈ 550.
Each simulation is run for at least 10 largest eddy-turnover
times, δ/uτ , to wash out any initial transients. Once the flow
reaches a statistically steady state, statistics are collected over
10-15 δ/uτ . Full details of the numerical method can be found
in Sharma & Garcı́a-Mayoral (2020a,b).

Results and Discussion
Because the surface morphology has a direct impact on

the flow within the ’roughness sublayer’, of thickness ycrit , we
expect no outer-layer similarity below y∗ = ycrit . To determine

∆y and u⋆τ that recover a smooth-wall-like βc, we therefore
minimise the deviation between βs and βc, the smooth-wall
and canopy diagnostic functions, above ycrit . Additionally, be-
cause ycrit can vary depending on the canopy density regime,
ycrit need to be determined separately for each canopy flow,
(Jiménez, 2004; Brunet, 2020). By this method, we avoid en-
forcing a plateau in βc artificially, relying on just the logarith-
mic layer. Instead, we recover a smooth-wall-like βc in the
logarithmic layer and above.

We first assess the sensitivity of the results to the choice of
ycrit . As an example, Figure 2(a) depicts the diagnostic func-
tion of case I144 for different values of ycrit . For ycrit = 0.098,
βc is not smooth-wall-like above this height even if the devia-
tion between βs and βc is minimised. This is because ycrit is so
small that the flow just above ycrit is still within the ’roughness
sublayer’ and is perturbed by the canopy elements. However,
for ycrit ≥ 0.173, βc is smooth-wall-like for all y∗ greater than
ycrit . As shown in Figure 2(b), the r.m.s. deviation between
βc and βs remains stable and small when ycrit ≥ 0.173. Nev-
ertheless, the deviation between βc and βs persists even for
large ycrit . The major source of this persistent deviation may
be attributed to the numerical noise in βs and βc, as depicted
in Figure 2(a).

In the above, we have left the friction velocity as an inde-
pendent parameter. To determine ∆y and u⋆τ , which are func-
tions of ycrit as depicted in Figure 2(c), we need to set the
lower and upper bounds for ycrit . In Figure 2(b), the lower
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Figure 4. (a) Modified defect-law velocity profiles and (b) modified diagnostic functions, κ · y+∗ ∂U+/∂y+∗ , scaled with the friction
velocity, u∗τ , evaluated at the virtual origins, as shown in Figure 7. , smooth-wall reference statistics; to , dense to sparse
canopy statistics.
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Figure 5. Turbulent r.m.s velocity fluctuations of smooth-wall and canopy flows scaled with the friction velocity, u∗τ , evaluated at the
virtual origins, as shown in Figure 7. The colour scheme is as in Figure 4.

bound for ycrit is given by the intersection between the r.m.s.
error curve and twice the baseline error—the r.m.s. βc − βs
when ycrit is large. Above this lower bound, the deviation be-
tween βc and βs is small, and a smooth-wall-like βc can be
recovered based on ∆y and u⋆τ obtained from all ycrit above
the lower bound. We set the upper bound 0.1 above the lower
bound, as the r.m.s. βc −βs varies little beyond this.

As shown in Figure 2, the critical height where outer-layer
similarity recovers for I144 is ycrit = 0.173± 0.05, which is
smaller than the typical roughness layer thickness (1-2h above
the canopy tips). Additionally, because ycrit/δ is smaller than
the typical upper bound for the logarithmic region (y ≈ 0.3δ ),
we expect the recovery of a smooth-wall-like logarithmic layer
for the canopy flow (Luchini, 2018; Yamamoto & Tsuji, 2018).
Based on the confidence interval of ycrit , we obtain the zero-
plane displacement, ∆y = −0.113 ± 0.005, and the height
where u⋆τ is evaluated at, yu⋆τ = −0.574 ± 0.063—note that
yu⋆τ ̸= ∆y.

Despite y∗ and u⋆τ yielding a smooth-wall-like βc, the tur-

bulent velocity fluctuations are better scaled by u∗τ than by
u⋆τ , as illustrated in Figure 3(a). Alternatively, the diagnostic
function can be shown to exhibit the same smooth-wall-like
behaviour if, rather than setting the friction velocity indepen-
dently of the zero-plane displacement height, κ is allowed to
be different from its smooth-wall value, as shown in Figure
3(b). In the logarithmic layer, Eq.(2) can be expressed as

κcy+∗
∂U+

∂y+∗
= 1,κc = (u∗τ/u⋆τ )κs, (3)

where κs ≈ 0.4 is the smooth-wall Kármán constant, and κc is
the new canopy-flow Kármán constant.

Both the diagnostic function, κcβc, and the defect law
for κU+ exhibit a good collapse with smooth-wall data, as
shown in Figure 4. This implies the recovery of a logarithmic
layer, but with a Kármán constant different from κs ≈ 0.4. Fig-
ures 5 and 6 show that the turbulent velocity fluctuations and
Reynolds shear stress are significantly perturbed by the pres-
ence of the canopy in the near-wall region, y∗ ≲ 0.2, while in
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Figure 6. Pre-multiplied spectral energy densities at y∗ = 0.5δ for the smooth-wall (filled contours) and canopy flows (line contours):
(a) kxkzEuu; (b) kxkzEvv; (c) kxkzEww; (d) kxkzEuv. The contours in (a− c) are at 0.1, 0.3 and 0.5 times the maximum level. The
contours in (d) are at 0.05, 0.2 and 0.5 times the maximum level. The colour scheme is as in Figure 4.
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Figure 7. (a) Ratio of zero-plane displacement to canopy height, ∆y/h, and (b) canopy-flow Kármán constant, κc. In (a), ,
canopy-tip plane, y/h = 0, and floor, y/h = −1. In (b), , smooth-wall Kármán constant, κs ≈ 0.4, obtained from the logarithmic
layer, y+ = 80 to y = 0.25δ . The colour scheme is as in Figure 4.

the outer layer, y∗ ≳0.3, they are essentially smooth-wall-like.
The ratio of zero-plane displacement to canopy height,

∆y/h, and the Kármán constant, κc, for each canopy flow are
portrayed in Figure 7. For the densest canopy, with λ f ≈ 2.04,
∆y is essentially zero, and κc ≈ 0.4, suggesting that the overly-
ing turbulence is essentially smooth-wall-like and perceives a
virtual origin at the canopy-tip plane. Scaling with the friction
velocity evaluated at the canopy tips has also been reported
in the study of turbulence over dense filament canopies by
Sharma & Garcı́a-Mayoral (2020b). In the densest canopies
investigated, the turbulent flow ’skimmed’ over the canopy
tips, as the turbulent eddies were precluded from penetrat-
ing within and interacting with the canopy elements, to the
point that the flow above the canopy-tip plane resembles a
smooth-wall flow (Brunet, 2020). However, canopies with
λ f ≈ 0.01− 0.91 have κc values very different from that of

a smooth-wall flow, as depicted in Figure 7(b), implying a
deeper modification of the flow by the presence of the canopy.

The zero-plane displacement, ∆y, is associated with the
depth that shear can penetrate within a porous media (Jackson,
1981; Clifton et al., 2008), and this shear penetration depth in-
creases with permeability (Okazaki et al., 2021). This trend
is depicted in Figure 7(a). As canopy density decreases, the
outer-layer flow perceives a deeper virtual origin, and for the
sparse cases with λ f ≈ 0.01−0.06, the virtual origins are very
close to the floor. However, for the intermediate to dense cases
with λ f ≈ 0.51 − 2.04, ∆y/h is small because the closely-
packed canopy elements obstruct the shear penetration. Fig-
ure 7(b) indicates that cases with λ f ≈ 0.03 − 0.91 exhibit
κc smaller than κs ≈ 0.4. We note that κc < 0.4 is also ob-
served by studies that enforce a plateau in (y−∆y)+dU+/dy+

(Breugem et al., 2006; Suga et al., 2010). However, the spars-
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est canopy, with λ f ≈ 0.01, results in κc > κs ≈ 0.4, which to
the best of the authors’ knowledge has not been reported by
any previous studies.

Conclusions
In the present work, we have assessed outer-layer similar-

ity in flows over canopies with various λ f . To obtain the zero-
plane displacement that recovers a smooth-wall-like diagnostic
function, we minimise its deviation from smooth-wall results
above the ’roughness sublayer,’ instead of merely enforcing a
plateau in the logarithmic layer. We do so because a plateau in
β equal to 1/κ emerges only at high Reτ , and also because we
obtain a smooth-wall-like β not only in the logarithmic layer
but also in the ’wake’ region. However, an independently set
friction velocity results in poor scaling for the turbulent fluc-
tuations, so we measure the friction velocity at the height of
zero-plane displacement, which leads to a Kármán constant
different from κs ≈ 0.4. When scaled with u∗τ and y∗, the tur-
bulent fluctuations, velocity profile and diagnostic function are
similar to those of a smooth-wall flow, indicating the recovery
of outer-layer similarity, but with a Kármán constant different
from κs ≈ 0.4. As the canopy density decreases, the outer-
layer flow perceives a deeper virtual origin. For the sparsest
cases, the virtual origins are close to the floor, indicating a
significant flow penetration into the canopy. For intermediate
densities, the Kármán constant is smaller than κs ≈ 0.4, which
is consistent with results from previous studies on outer-layer
similarity (Breugem et al., 2006; Suga et al., 2010). For our
sparsest canopy, κc is larger than κs ≈ 0.4.
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