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ABSTRACT 

In order to improve the performance and reliability of heat 

transfer equipment such as heat exchangers, it is important to 

understand turbulent heat transport phenomena. Despite the 

fact that turbulent heat transfer is unsteady and non-uniform, 

few experiments have focused on the spatio-temporal 

characteristics of turbulent heat transfer because of the 

difficulties in measuring it. Since most of earlier experiments 

are limited to time-resolved point measurement or time-

averaged field measurement, the characteristics of turbulent 

heat transfer are still not well known especially for complex 

flows, to which DNS is difficult to apply. Recently, Nakamura 

and Yamada (2013) investigated the spatio-temporal variation 

of heat transfer in a turbulent boundary layer using a thin-film 

heater and high-speed infrared thermography. Their unsteady 

measurements captured thermal streak structure caused by 

turbulence structure near the wall. 

In this study, application of temperature sensitive paint 

(TSP) to the spatio-temporal measurement of wall temperature 

was attempted in a turbulent channel flow to develop a new 

temperature measurement technique. In order to improve the 

frequency response to the fluctuating heat transfer by near-

wall turbulence, thin-film heater was employed as a bottom 

wall with a thermal insulation layer. A thin TSP layer was 

coated on the film heater to optically measure fluctuating wall 

temperature distribution. The noise in the TSP images of 

fluctuating wall temperature was drastically reduced by a 

deep-learning based denoising technique, to which a noise-

extraction technique proposed by the authors was applied. 

 

 

INTRODUCTION 

Since most of the flow in industrial equipment is turbulent, 

the associated heat transfer becomes unsteady, varying in time 

and space. Therefore, it is important to develop experimental 

methods to measure the unsteady wall temperature and heat 

flux distribution to evaluate the heat transfer coefficient. A 

method using a titanium foil heater and an infrared camera was 

demonstrated by Nakamura and Yamada (2013) to measure 

the variation of heat transfer coefficient due to turbulence, but 

in general it requires a careful consideration to the window 

material and the shooting angle in order to obtain highly 

accurate measurement. In order to avoid the weaknesses of an 

infrared camera, temperature sensitive paint (TSP) made of 

Ru(phen)3 is applied in this study to measure the temperature 

fluctuation on the thin metal-film heater. Since the emission 

wavelength band of Ru(phen)3 is in the visible light range, 

transparent acrylic walls and a high-speed CMOS camera can 

be applied. This enables us to obtain high-resolution images 

of instantaneous temperature distribution at relatively low cost. 

However, due to the small temperature sensitivity of TSP, the 

noise in the captured image is relatively large when measuring 

the slightly fluctuating wall temperature. To improve the 

spatio-temporal resolution of wall temperature fluctuation 

measurement using TSPs, it is important to reduce the noise in 

the captured images. 

Recently, Lehtinen et al. (2018) have developed a machine 

learning technique called Noise2Noise (N2N) to remove noise 

from images. It was achieved by a deep learning technique 

using a type of CNN called U-Net (Ronneberger et al., 2015). 

Unlike conventional machine-learning denoising methods that 

use "supervised learning," in which noise-containing images 

are paired with noise-free images, Noise2Noise is superior in 

that it does not use noise-free images “directly” as training 

dataset. However, it still “indirectly” requires noise-free 

images to generate noisy image pairs as the training dataset. 

Therefore, it is usually considered difficult to apply the 

method to non-stationary phenomena where it is difficult to 

obtain noise-free images with long exposures. 
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Therefore, in this study, a noise-reduced image was 

generated by applying FFT and a low-pass filter to the noise-

containing time-series images of the wall surface temperature 

acquired by TSP. Then, the noise-reduced images were 

considered as an approximation of the "noise-free images" to 

produce noisy image pairs for the training of the N2N network. 

By this method, the noise images specific to the current 

experimental setup can be extracted by subtracting the noise-

reduced images from the raw images. Noisy image pairs as a 

training dataset are then produced by adding the randomly-

selected noise pair to the noise-reduced images.  

 

 

EXPERIMENTAL METHOD 

Temperature sensitive paint (TSP) is a polymer-based 

paint that utilizes thermal quenching (Chen et al., 2020). Since 

the luminescence intensity depends on the temperature of the 

paint, the temperature distribution on the surface of an object 

coated with TSP can be measured by capturing the 

luminescence intensity with a CMOS digital camera. The 

relationship between luminescence intensity I and absolute 

temperature T can be given in the Arrhenius form as follows 

(Liu and Sullivan, 2005): 
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where Enr is the activation energy for non-radiative process, R 

is the universal gas constant, and Iref is the luminescence 

intensity at a reference temperature Tref. From Eq. (1), it can 

be seen that the logarithm of the luminescence intensity ratio 

is proportional to the reciprocal of the temperature. In practice, 

temperature is obtained from the luminescence intensity ratio 

using Eq. (2), which is a generalized form of Eq. (1) (Chen et 

al., 2020). 
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Figure 1 shows a schematic of the experimental setup to 

obtain a calibration curve, which gives a relation between TSP 

temperature and luminescence intensity. In the calibration 

experiments, a test piece coated with TSP was placed on the 

Peltier-type temperature controller in a darkroom. The surface 

temperature of the test piece was measured with a 

thermocouple. A power LED with an emission wavelength of 

405 nm was used as the excitation light source. A 300-450 nm 

band-pass filter was attached to the power LED to remove 

excess light. Fluorescence intensity images of TSP at selected 

temperature in the range of 35 to 70 °C were captured by a 

high-speed camera (MEMRECAM Q1v) equipped with a 

long-pass filter (> 550 nm), which was also used in the 

following wind tunnel experiments. One hundred images were 

taken at each temperature both for light-off background 

images and light-on images. The fluorescence intensity I and 

Iref at 35 °C in Eq. (2) was obtained by averaging the 100 light-

on images and subtracting the background images at each 

temperature. Figure 2 shows a calibration curve obtained in 

the form of N = 2 in Eq. (2).  

In the experiment, the temperature sensitivity ST is defined 

by the following equation according to Egami, et al. (2014). 
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The temperature level of the heater surface in the wind 

tunnel test was 60 to 70 °C, and the temperature sensitivity of 

TSP in this temperature range was 2.5 to 2.9 %/°C. This 

corresponds to a change of 52 to 53 counts/°C in the camera 

signal (luminescence intensity) in our experimental conditions. 

The error of measured temperature due to the shot noise of our 

high-speed camera was estimated to ± 1.1 °C, which is 

calculated from a mean standard deviation of the fluctuating 

signal counts within a temperature range (60 to 70 °C) 

measured in the calibration process. This indicates that noise 

reduction is required to capture the detail of small temperature 

fluctuation less than ±1 °C. 

The experiments were performed at the air central velocity 

of Uc = 1.0, 2.0, 5.0 and 10.0 m/s in a wind tunnel with a 

rectangular cross-section of 80 mm in width and 20 mm in 

height; the total channel length is 1800 mm. Corresponding 

Reynolds number based on the channel height are 1250, 2500, 

6250 and 12500, respectively. Figure 3 shows an experimental 

setup, including the side and cross-sectional views of the test 

section. The bottom wall of the test section is an isothermal 

wall, of which temperature is controlled by hot water 

circulation. A thin-film heater (5 m thick titanium film) is 

installed in a section of the isothermal wall. The heater is set 

above an insulation air layer of 1 mm in depth, which was 

created by machining the bottom wall. The insulation between 

the heater and the bottom wall was maintained by adjusting 

the mean temperature of the heater close to that of the 

isothermal wall. The titanium-film electric heater was spray-

coated with TSP to measure the surface temperature. A high-

speed camera (MEMRECAM Q1v) was used to acquire the 

luminescence of TSP. The frame rate, exposure time and 

spatial resolution were 1000 frames per second, 997 s and 

134 m/pixel, respectively. To obtain mean temperature 

distribution, 1024 images were taken at each experimental 

condition. 

 

 

DENOISING TECHNIQUE 

In this paper, we focus on the fluctuating temperature of 

thin film heater due to the convective heat transfer by wall 

turbulence. The wall temperature fluctuation T’ is defined by 

Eq. (4), where Tw is an instantaneous temperature on the heater 

and wT
 
is the time-averaged value at each pixel.  

 

 ww TTT    (4) 

 

Figure 4 shows typical temperature fluctuation fields 

obtained by TSP measurements for (a) Uc = 5.0 and (b) Uc = 

10 m/s. It is confirmed that thermal streak structures relevant 

to the near-wall turbulence are observed. However, detailed 

structure of the thermal streaks cannot be clearly observed due 

to the small magnitude of temperature fluctuation, which are 

comparable to the error levels of TSP measurements 

mentioned above.  

To reduce the noise levels of the temperature fluctuation 

fields, a low-pass filter with a cut-off frequency of 50 Hz was 

first applied to the time-series of measured data. Figure 5 

shows the results of the temperature fluctuation fields 
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corresponding to the images in Fig. 4. It is confirmed that the 

low-pass filtered temperature fluctuation fields gives better 

spatial resolution to the thermal streak structures. Finer 

thermal streak structures have appeared and the contour maps 

seem to be more smoothly distributed, as confirmed by the 

increase in the white area between the positive (red) and 

negative (blue) thermal streaks. However, an undesirable level 

of noise still remains, which could hinder detailed analysis, 

such as an inverse analysis of the heat transfer coefficient 

considering the heat capacity of the metallic foil heater. 

To further reduce the noise level, noise reduction by 

machine learning (ML) seems to be a promising approach. In 

this study, we applied a ML-based noise reduction method 

called Noise2Noise (N2N) proposed by Lehtinen, et al., 2018. 

The N2N uses a type of CNN called U-Net (Ronneberger et 

al., 2015) to learn a denoising network to remove noises from 

images. In the author’s view, the N2N learning requires a large 

number of noisy image pairs, each of that differs only in their 

noise components; the one is a noise-free image A with a noise 

B added, and the other one is a noise-free image A with a noise 

C added. Then, a network is trained to generate an output noisy 

image (= A + C) from an input noisy image (= A + B). After 

training the network on a large number of such noisy image 

pairs, the “averaged” network obtained will eventually be able 

to output an “averaged” image that is intermediate between an 

input image with noise B’ and an “unknown” image with noise 

C’ corresponding to the other one of the image pair. This is 

similar to the principle that an average of a large number of 

noisy images yields a noise-free averaged image. As a result, 

the output image by N2N are expected to be an image that 

contains greatly reduced noise. 

The weakness of Noise2Noise is that it requires image 

pairs that differ only in their noise components to train the 

network. This requires a noise-free image A. However, it is 

generally difficult to obtain such a clean image, except for 

stationary phenomena in which a noise-free image can be 

obtained by long exposures. In addition, it is expected that in 

order for the noise reduction by N2N to be effective, it is 

necessary to add noises specific to the experimental conditions 

and methods of the measurement to learn the network. 

To overcome these difficulties, the authors devised a 

method to generate a noise-free image (or more precisely, an 

image with as little noise as possible) using FFT and a low-

pass filter. That is, after applying the FFT to each pixel in the 

time direction, we remove the frequency components above 

50 Hz to obtain an image with significantly reduced noise, 

which we consider to be the noise-free image A. Next, the 

noise component B, which is unique to this experiment, is 

extracted by subtracting the image A from the original image.  

Figure 6 shows a schematic of our method for noise-

extraction from the noisy raw images and the following 

procedure to obtain training data set of N2N. To prepare data 

for training, 500 time-series images were prepared. Based on 

these images, 500 noise images and 500 noise-free images 

were created, respectively. For the generation of network 

training data, 96 noise-free images A, which were selected at 

regular time intervals from 500 images, were used. The input 

and output image pairs required for the training were 

generated by adding two noise images (noise image B and 

noise image C), which were randomly selected from the 500 

images, to the noiseless image A. Except for the method of 

adding a noise to a clean image, the code and learning 

conditions basically follows the original N2N code available 

on GitHub (https://github.com/NVlabs/noise2noise). 

RESULTS AND DISCUSSION 

Figure 7 (a) shows the noisy raw data of instantaneous 

temperature fluctuations at Uc = 5.0 m/s. Thermal streaks 

related to the near-wall turbulence can be recognized, but 

quantitative evaluation is difficult due to the large noise. 

Figure 7 (b) shows the result of applying a trained denoising 

network using N2N. It can be seen that the noise is greatly 

reduced and the thermal streaks specific to the turbulent field 

can be clearly observed. To see the effect of N2N denoising 

network trained with extracted noise specific to the current 

experiments, Fig. 8 shows a comparison of power spectrums 

of wall temperature fluctuation between raw data and four 

denoised data, which are processed from the raw images by a 

low-pass filter (cut-off frequency: 50 Hz), median filter, 

Gaussian filter, and the Noise2Noise network with a proposed 

noise-extraction technique. It is confirmed that N2N network 

can reduce the noise more effectively than Gaussian and 

median filters over the whole frequency range. The most 

interesting point is that the noise reduction by N2N also 

removes noise below 50 Hz, which is significantly different 

from the noise reduction by a low-pass filter, which is 

completely ineffective for noise below 50 Hz. It is interesting 

to note that even though the noise used for N2N training 

contains only frequency components above 50 Hz, noise 

reduction was effective even for noise below 50 Hz. 

 

SUMMARY 

Spatio-temporal measurement of the wall temperature 

distribution in a turbulent channel flow was attempted to 

develop a new temperature measurement technique using TSP 

for turbulent heat transfer phenomena. Noise in TSP images 

was drastically reduced by the N2N denoising network with a 

proposed noise extraction technique. As a result, the transient 

behavior of the thermal streak structure, which is relevant to 

near-wall turbulence, is clearly captured.  
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Figure 1. Experimental setup for the calibration of temperature measurement using temperature sensitive paint (TSP). 

 

 

Figure 2. An obtained calibration curve of TSP (Ru-phen).  

 

 

Figure 3. Experimental setup (top left) and a close-up of test section with TSP-coated metal film heater (bottom). 
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Figure 4. Typical wall temperature fluctuation fields calculated from noisy raw TSP images. 

 

 
Figure 5. Wall temperature fluctuation fields extracted by low-pass filtering (< 50 Hz) with pixel-by-pixel FFT in time direction. 

 

 

Figure 6. A schematic of our noise extraction technique and the following procedure to obtain noisy image pairs as inputs to N2N.  

 

(a) Uc = 5.0 m/s, Re = 6250 (b) Uc = 10.0 m/s, Re = 12500

(a) Uc = 5.0 m/s, Re = 6250 (b) Uc = 10.0 m/s, Re = 12500
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Figure 7. Wall temperature fluctuation on a TSP-coated thin-film heater; (a) noisy raw data and (b) denoised data.  

 

 

Figure 8. Comparison of power spectrums of wall temperature fluctuation between raw data and denoised data, which are processed 

by a low-pass filter (cut-off frequency: 50 Hz), median filter, Gaussian filter, and the Noise2Noise network with a proposed noise-

extraction technique. 

(a) Noisy raw data (b) Denoised data


