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ABSTRACT
The effect of spanwise wall oscillation on exact coherent

states in plane Couette flow is investigated for a large range
of amplitudes (Aw) and periods of oscillations (T ). The con-
trol forms a time-dependent shear layer, found responsible for
a significant drag reduction of the upper branches of equilib-
rium solutions. On the other hand, it has only a minor effect
on the lower branches. Increasing the oscillation amplitude de-
creases the skin-friction drag gradually and increases the sta-
bilisation effect. The analysis of phase portraits reveals that the
wall oscillation reduces the size of the turbulent region in state
space and damps the repelling strength of the upper branch so-
lutions. Moreover, this modification of state-space dynamics
by spanwise wall oscillation stabilises most of the equilibrium
solutions’ unstable modes and shortens the turbulence lifetime
significantly.

INTRODUCTION
The skin-friction drag reduction in wall-bounded shear

flows is one of the main goals for many engineering designs.
Most of the skin-friction drag in such flows is related to the
turbulence generation mechanism near the wall especially at
low Reynolds numbers. This mechanism, known as the self-
sustaining process (Hamilton et al., 1995), is a quasi-cyclic
process of alternating quasi-streamwise vortices and high/low-
speed streaks. The quasi-streamwise vortices give rise to the
streaks through the lift-up mechanism (e.g. Butler & Farrell,
1993). The streaks subsequently experience an instability or
a transient growth, which causes their breakdown. Finally, af-
ter this breakdown, the quasi-streamwise vortices are regen-
erated. During the formation of the streaks, the lift-up effect
brings a high streamwise momentum to the wall, responsible
for a large part of skin-friction production (Kravchenko et al.,
1993). Therefore, for the purpose of drag reduction at least at
low Reynolds numbers, it is relevant to act on the flow struc-
tures in the vicinity of the wall.

There are various strategies for turbulent skin-friction
drag reduction in near-wall turbulence. In this paper, we
will focus on the spanwise wall oscillation, which forms an

unsteady shear layer (i.e. Stokes layer) that interacts with
the near-wall structures and can significantly reduce turbulent
skin-friction (Jung et al., 1992; Ricco et al., 2021). We define
skin-friction drag reduction as the relative difference of skin
friction coefficient of the controlled and uncontrolled states.
At low Reynolds numbers (Reτ ≃ 200, where Reτ is the fric-
tion Reynolds number), the spanwise wall oscillation can re-
duce the skin-friction drag up to 40% with the optimal period
T+ ≈ 100. The skin-friction decreases as the amplitude of os-
cillation A+

w is increased monotonically.
The main goal of this study is to characterize the state-

space dynamics of near-wall turbulence under spanwise wall
oscillation control. It has been shown that state-space dynam-
ics may be an important concept to understand and optimize
the control of turbulent flow (Kawahara, 2005; Ibrahim et al.,
2019). The state space is characterised by various invariant so-
lutions (e.g. equilibria, traveling waves, periodic orbits, etc.),
which form the skeleton of its dynamics. In particular, the sus-
taining actuation like spanwise wall oscillation would deform
the entire state space. As such, the examination of how the
control changes the invariant solutions would provide physical
insight into the state-space dynamics to understand and im-
prove the given control strategy in wall-bounded shear flows.

PROBLEM FORMULATION AND METHOD
We consider the canonical plane Couette flow of incom-

pressible viscous fluid confined between two parallel imper-
meable plates. We denote x, y and z by the streamwise, wall-
normal and spanwise directions, respectively. The upper and
lower walls are located at y = ±h, and the flow is driven by
imposing the following boundary conditions: u|y=±h = ±Uw,
where u is the streamwise velocity and ±Uw the moving ve-
locity of the upper and lower walls. We define the Reynolds
number as Re =Uwh/ν , where ν is the kinematic viscosity.

The numerical simulations are carried out using the
Navier-Stokes solver Diablo (Bewley, 2014). In this code,
we use a second-order central differences scheme and Fourier
series with 2/3 dealiasing rule to discretize the wall-normal
and periodic directions respectively. A combination of the
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Crank-Nicolson and third-order Runge-Kutta method serves
for time integration. We considered two flow domains
ΩN ≡ [Lx/h Ly/h Lz/h] = [1.75π 2 1.2π] and ΩHKW =
[3.4662π 2 1.7391π]. The periodic boundary condition is
imposed in the wall-parallel directions. The spanwise wall-
oscillation control is implemented, so that the two walls oscil-
late in phase in the spanwise direction according to

Ww(t) = Aw sin(ωt) = Aw sin(2πt/T ), (1)

where Ww is the spanwise velocity at the wall, Aw the am-
plitude, T the wall oscillation period, and ω the angular fre-
quency. The parameters are scaled with inner viscous units
of the uncontrolled turbulent state at Re = 400: i.e. A+

w =
Aw/uτ and T+ = Tu2

τ/ν , where uτ =
√

τw/ρ is the skin-
friction velocity with τw being the wall-shear stress of the
uncontrolled flow. The skin-friction coefficient is defined as
C f = 2(Reτ/Re)2, where Reτ = uτ h/ν is the friction Reynolds
number.

In the present study, we consider four sets of equilibrium
solutions, i.e. EQ0 obtained in ΩN by Nagata (1990), EQ1,
EQ4 and EQ7 obtained in ΩHKW by Gibson et al. (2009). The
edge state is a periodic orbit (PO) identical to the gentle pe-
riodic solution found by Kawahara & Kida (2001). Depend-
ing on the skin-friction value, the solutions are classified into
lower (low friction) and upper (high friction) branches (see
below for further details). The solutions are computed us-
ing the Newton-Krylov-Hookstep method, which minimizes
the relative error between the initial state and the final state
translated in time and streamwise direction at t = T0. When
there is no control, the equilibrium states considered are sta-
tionary. Therefore, the period T0 can arbitrarily be fixed, and
T0 = 8h/Uw is used in the present study. However, under
spanwise wall oscillation control, the period needs to satisfy
T0 = nT , where a positive integer number n is fixed as n = 1
to minimize the computational cost. Once an equilibrium so-
lution is obtained, its bifurcation is also studied. To construct
the bifurcation diagrams, the continuation with the Reynolds
number Re or the control parameters Aw and T of the solutions
is carried out using pseudo-arc-length continuation which im-
proves the computation of the equilibrium solutions near turn-
ing points. Finally, the stability of each equilibrium solution is
examined using the standard Arnoldi iteration.

RESULTS AND DISCUSSION
Bifurcation overview

The bifurcation diagram, represented by C f −Re, of the
equilibrium solutions and edge state, is shown in figure 1.
Each solution arise from a saddle-node bifurcation. The solu-
tion EQ0, discovered by Nagata (1990), appears at the smallest
critical Reynolds number Rec ≈ 127, then followed by EQ7 at
Rec ≈ 167 from Gibson et al. (2009). The bifurcation curves
for EQ1 and EQ4 show several bifurcations. EQ1 exhibits a
series of sophisticated saddle-node bifurcations in which the
four branches twisted one another. The first saddle-node bifur-
cation occurs at Rec ≈ 386, and the second and third bifurca-
tions occur on the upper branch at Rec = 408 and Rec = 435,
respectively. EQ4 arises from a saddle-node bifurcation at
Rec = 275, followed by a second from the lower and upper
branche at Rec = 494 and Rec = 438, respectively. The bifur-
cation curve of PO has a critical Reynolds number located at
Rec = 236. To analyse the action of control on the bifurcation
curves, we focus only on the equilibrium solution EQ0. The
other solutions show similar behaviours.

Figure 1. Bifurcation diagram of the equilibrium solutions
and periodic orbit: EQ0, black thick solid line; EQ1, red solid
line; EQ4, pink dash-dotted line; EQ7, blue dashed line; PO,
green dotted line. The vertical dotted line indicates Re = 400.

Previous studies have shown that spanwise wall oscilla-
tion reaches the optimal of drag reduction at T+ ≈ 100. Figure
2(a) shows the bifurcation curves for EQ0 for different oscilla-
tion periods T+ ∈ [0,300] at a fixed wall oscillation amplitude
A+

w = 0.85. In this figure, we focus on the identification of the
saddle-node point. Therefore, for this figure, we use the vis-
cous inner units of the uncontrolled saddle-node point for the
scaling of the oscillation period. The control reduces the skin-
friction drag for the upper branch significantly, while it has
a minor effect on the lower solution. The saddle-node point
is continuously pushed to higher Re as the oscillation period
T+ is increased, from Rec = 127.3 at T+ = 0 to Rec = 142.5
at T+ = 211.9. We note that at T+ = 264.9 the saddle-node
point decreases to Rec = 142.2 and increases only slightly for
T+ > 106. Those observations indicate an optimal oscillation
period around T+ = 100, consistent with the DNS data as well
as our previous bifurcation study of the ECS under spanwise
wall oscillation in Poiseuille flow (Yang et al., 2019). Figure
2(b) shows the bifurcation curves of the equilibrium solution
EQ0 for different spanwise wall oscillation amplitudes at fixed
wall oscillation period T+ = 79.8. The solid line indicates the
uncontrolled reference case. When increasing A+

w , the upper
branch shows a significant drag reduction. The strong control
effect on the upper branch involves a substantial change in the
bifurcation diagram by introducing new bifurcations along the
upper branch. On the contrary, the effect on the lower branch
is nearly negligible over almost the entire range of Re. The
effect of the control is, however, not monotonic. Indeed, near
the bifurcation point, the skin-friction drag of the lower branch
is slightly increased. Therefore, the two branches are pushed
towards each other until they merge and disappear. The con-
sequence is that the control pushes the threshold of the saddle-
node bifurcations to higher Reynolds numbers, which indi-
cates a stabilisation of the equilibrium solutions. Figure 2(c)
shows the bifurcation curves of the skin-friction coefficient to
the wall oscillation amplitude A+

w for various oscillation peri-
ods T+ at a fixed Re = 400. The upper branch exhibits a sig-
nificant reduction of skin friction when increasing A+

w , which
is consistent with figure 2(b). On the other hand, C f of the
lower branch depends on each solution and the period of os-
cillation considered. Therefore the two branches converge and
meet at a given value of A+

w , forming a saddle-node bifurcation
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Figure 2. Bifurcation curves for EQ0. (a) C f −Re with dif-
ferent oscillation periods at A+

w = 0.85. Here wall units of
the uncontrolled case at the saddle-node point are used for the
scaling of the wall oscillation period. (b) C f −Re with differ-
ent oscillation amplitudes at T+ = 79.8. The arrow indicates
the direction of increasing A+

w . (c) C f −A+
w with different os-

cillation periods at Re = 400. The red circle and triangle indi-
cate two cases (A and B) of parameters for which the statistics
are analysed.

in terms of A+
w . The critical A+

w of the saddle-node bifurcation
is reached at lower values when the wall-oscillation period T+

is increased.

Figure 3. Spanwise Stokes layer for EQ0 and analytical so-
lution at 8 equally separated phases. (a) Case A : Re = 400,
T+ = 159.7, A+

w = 2.7. (b) Case B : Re = 400, T+ = 159.7,
A+

w = 4.5.

Statistics
The spanwise wall oscillation form an unsteady near-wall

spanwise shear layer (i.e. Stokes layer) that interacts with the
near-wall structures. For the laminar case, the Stokes layer is
represented analytically as (Schlichting, 1979)

W (y, t) = Awe−η sin(2πt/T −η), (2)

where η = −y
√

πRe/T drives the Stokes layer thickness
which depends on the oscillation period. We note that the am-
plitude act on the spanwise displacement of the wall. In the
laminar regime, the fluid enhanced by the spanwise wall oscil-
lations and the streamwise flow are decoupled. Figure 3 shows
the Stokes layer at 8 equally separated phases for the cases A
and B indicated by the circle and triangle in figure 2(c), re-
spectively. Here we fix the oscillation period T+ = 159.7 and
consider two amplitudes A+

w = 2.7 (case A) and A+
w = 4.5 (case

B). The analytical Stokes layer deviates from the equilibrium
state when the control is applied. We note that the deviation
decreases when close to the wall and becomes substantial away
from the wall. The Stokes layer of the equilibrium state is
fixed by the wall-normal gradient of the spanwise Reynolds
shear stress term ∂v′w′/∂y. The Reynolds shear stress has
been found to increase with T+ and Re (Ricco & Quadrio,
2008). Therefore, this justifies the improved agreement with
the analytical solution when the Stokes layer is thin at small
oscillation period T+ (not shown here). We observe from fig-
ure 3 that the state with a higher drag (case A) differs signifi-
cantly from the analytical solutions. Whereas, the state with a
lower drag (case B) shows a quite good agreement even if the
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Figure 4. Root mean square (r.m.s) velocity profiles for case
A (Re = 400, T+ = 159.7 and A+

w = 2.7). (a) u+rms, (b) v+rms,
and (c) −u′v′

+
. The upper (lower) branch of the uncontrolled

state is represented by dashed-dotted (dashed) lines. The con-
trolled state is shown with dotted lines at 8 equally separated
phases, and its mean profile is indicated by the solid line. The
components are scaled with viscous inner units of the uncon-
trolled DNS.

amplitude of oscillations is twice smaller.
Figure 4 shows the root mean square (r.m.s) velocity com-

ponents, u+rms, v+rms, and the streamwise shear stress u′v′
+

. The
dotted lines indicate eight equally separated phases over one
wall oscillation period. The peak in u+rms of the upper branch
is near the wall and that of the lower branch is located in
the channel center. The profiles of state A (with Re = 400,
T+ = 159.7 and A+

w = 2.7) appear between the lower and up-
per branches. Compared to the upper branch, the state A shows
an increase of u+rms in the channel center and the near-wall
peak observed in the upper branch is significantly weakened.
Moreover, the control weakens the Reynolds shear stress u′v′

+

Figure 5. Phase portraits for controlled and uncontrolled
states at Re= 400. The control parameters are set to A+

w = 17.7
and T+ = 14.3. (a) IU −Du plane where Dr is the rate of to-
tal dissipation of the uncontrolled laminar state. (b) Euu −Evv

plane. The black dashed and solid cyan lines represent the con-
trolled and uncontrolled turbulent states. The open and closed
circles indicate the mean of those turbulent trajectories. The
open and closed symbols show the uncontrolled and controlled
equilibrium states, respectively. Each controlled equilibrium
state is shown as the average over the wall-oscillation period.

compare to the upper-branch solution, which indicates a reduc-
tion of the drag according to the FIK identity (Fukagata et al.,
2002). Indeed the upper branch solution shows 35.8% of drag
reduction. Those statistics features and bifurcation behaviour
are similar to the other equilibrium solutions in the HKW box
(not shown).

State-space dynamics

We will visualise and analyse, in this section, the state
space using phase portraits. Following previous studies (e.g.
Kawahara & Kida, 2001; Ibrahim et al., 2019), we introduce
the global mean kinetic energy (MKE):

4



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

dEU
dt

=
Uwτuw

h︸ ︷︷ ︸
IU

− 1
V

∫
Ω

−⟨u′v′⟩x,z
∂U
∂y

dV︸ ︷︷ ︸
Puv

− ν

V

∫
Ω

(
∂U
∂y

)2
dV︸ ︷︷ ︸

DU

+
Wwτww

h︸ ︷︷ ︸
IW

− 1
V

∫
Ω

−⟨v′w′⟩x,z
∂W
∂y

dV︸ ︷︷ ︸
Pvw

− ν

V

∫
Ω

(
∂W
∂y

)2
dV︸ ︷︷ ︸

DW

(3)

with the MKE given by

EU =
1
V

∫
Ω

U ·U dV, (4)

where Ω (ΩN or ΩHKW ) is the given computational
domain, Uw and Ww are the streamwise and spanwise ve-
locities at the wall, and τuw = ν⟨∂U/∂y|±h⟩x,z and τww =
ν⟨∂W/∂y|±h⟩x,z the mean streamwise and spanwise shear
stress, respectively. The average over the streamwise and span-
wise directions is indicated by ⟨·⟩x,z. The terms, IU , Puv and
DU in the first line of equation (3), are the rate of energy in-
put, the rate of energy transport by streamwise mean shear to
turbulent kinetic energy (TKE), and the dissipation rate by the
streamwise mean velocity, respectively. Likewise, the three
other terms in the second line, i.e. IW , Pvw and DW , corre-
spond to the contributions from the spanwise wall oscillation.
The volume-averaged equation of TKE writes as

dEu
dt

=
1
V

∫
Ω

−⟨u′v′⟩x,z
∂U
∂y

dV︸ ︷︷ ︸
Puv

+
1
V

∫
Ω

−⟨v′w′⟩x,z
∂W
∂y

dV︸ ︷︷ ︸
Pvw

− ν

V

∫
Ω

(∇u′)2dV︸ ︷︷ ︸
Du

(5)

with Eu = Euu +Evv +Eww is the total turbulent energy
fluctuation averaged over the domain, written as

(Euu,Evv,Eww) =
1
V

∫
V
(u′2,v′2,w′2)/U2

wdV, (6)

The first two terms, Puv and Pvw in equation (5), are
identical to those of (3), however in equation (5) they corre-
spond to the rate of turbulence production by streamwise and
spanwise mean shear. The last term Du is the turbulent kinetic
energy dissipation. For details about the derivation of (3) and
(5) in the context of spanwise wall oscillation in channel flow,
the reader may refer to Ricco et al. (2012). Finally, the rate of
total energy input and dissipation are given by I ≡IU +IW
and D ≡ DU +DW +Du, respectively.

We report in figure 5 the phase portraits in Du and the
Euu −Evv plane, respectively. We selected the solutions from
ΩHKW and we fix Re = 400 and the control parameters to
A+

w = 17.7 and T+ = 14.3. We present the equilibrium solu-
tions and periodic edge state by averaging over a single wall-
oscillation period while we show the turbulent state as time-
dependent. Naturally, when the control is applied, non-zero

Figure 6. Spectra of complex-conjugate eigenvalues com-
pared between uncontrolled and controlled (A+

w = 17.7, T+ =

14.3) states. (a) the lower branch and (b) the upper branch of
the equilibrium solution EQ4 at Re = 400.

spanwise energy input IW feeds all the solutions (closed sym-
bols). Figure 5(a) shows that the control pushes all the so-
lutions towards the laminar state in the direction of decreas-
ing IU and Du. Indeed, at these specific parameters, all
the solutions indicate a reduction of drag (not shown). The
upper branches and the mean turbulent state show a signifi-
cant control effect compared to the lower solutions. Indeed,
the lower branches EQ4L and EQ7L show 7.3% and 3.2% of
drag reduction (DR), and the upper branches EQ4U and EQ7U
show 25.8% and 33.7% of DR respectively, and the mean tur-
bulent state indicates 10.9% of DR. The phase portrait in
Euu −Evv plane shown in figure 5(b) indicates similar results.
The decrease in Evv is the consequence of a reduction in the
wall-normal velocity fluctuation resulting from the control and
pushing the solutions towards the laminar state. Generally, the
control significantly affects the upper branches and has only a
modest effect on the lower branches. The phase portraits in-
dicate that the spanwise wall oscillation reduces the spread of
the turbulent state in phase space. Furthermore, the state-space
distances between the upper and lower branch of each solution
are reduced, indicating stabilisation of turbulence.

More generally, Figure 5 shows a reduction in the size of
the turbulent state region in state-space. This observation may
indicate that the control damps the repelling strength of each
equilibrium. Therefore, we further investigate this reduction in
the turbulent state region by checking the eigenspectra of the
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Figure 7. Probability distribution of turbulence to sustain
over time at Re = 400 and A+

w = 1.2 for different values of
wall oscillation period T+. The square symbols indicate the
uncontrolled reference case at A+

w = 0. The black arrow indi-
cates the increasing direction of T+.

exact coherent states. Figure 6 shows the complex-conjugate
eigenvalues of the lower and upper branches of EQ4. The real
and imaginary parts indicate the growth rate and frequency
of the eigenmodes, respectively. The lower branch solutions
show a small drag reduction (or even drag increase) and pair
with a negligible influence on the growth rates of the leading
eigenmodes, indicating a weak effect of spanwise wall oscilla-
tion control. However, we observe for the upper branch solu-
tions of both cases, that the growth rates of the eigenmodes fol-
low that of the drag when control is active. Indeed, the growth
rate decreases where the control provokes a reduction of drag,
indicating a stabilisation.

Turbulence in Couette flow with the given flow domains
is known as a ‘chaotic saddle’, and it is characterised by fi-
nite lifetime (Eckhardt et al., 2007a). The lifetime of the un-
controlled turbulent state also increases very rapidly with the
Reynolds number (Eckhardt et al., 2007b). The state-space
characteristics discussed in figures 5 and 6 suggest a strong
similarity between the effect of the control and that of lowering
the Reynolds number, indicating a reduction of turbulence life-
time when control is active. Therefore, the overall influence of
the state space by the spanwise wall oscillation is finally ex-
amined by computing the lifetime of turbulence subject to the
given control. To evaluate the lifetime, we carried out groups
of 100 controlled and uncontrolled DNS at Re = 400. The
initial conditions of the simulations were first obtained from
100 states computed at a slightly higher Reynolds number,
Re = 415. The lifetime is defined as a probability distribution
for the amplitude A+

w = 1.2 and oscillation periods T+ = 57.2,
71.5, 85.8, and 114.4. To monitor the lifetime of each sim-
ulation, we fix a threshold of the turbulent energy fluctuation
Evv +Euu < 10−5, below which turbulence will decay to lami-
nar flow. Figure 7 shows the probability for turbulence to sus-
tain up to a given time t as a function of A+

w and T+. We
first observe the classic exponential distribution of the lifetime,
confirming that this is a memoryless process (Eckhardt et al.,
2007a). It is found that the spanwise wall oscillation signif-
icantly reduces the lifetime of turbulence at A+

w = 1.2, as the
wall-oscillation period T+ is increased. The control clearly
enhances flow relaminarisation.

Conclusion
We investigated, in this study, the effect of spanwise wall

oscillation control on exact coherent states computed in two
different domains. We found that the upper branches of the so-
lutions are stabilized, and their skin-friction drag is reduced.
On the other hand, the lower branches are merely affected
by the control. The stabilisation of the upper-branch solu-
tion translates by the movement of the saddle-node bifurcation
point of the solutions to higher Reynolds numbers. When we
vary the oscillation amplitude, this behaviour is observed for
all the solutions. However, when varying T+, such a trend is
reversed for EQ0 when T+ ≥ 100, consistent with the obser-
vation in the previous DNS. We observed in the phase portraits
that the spanwise wall oscillation reduces the size of the state
space region as well as the repelling strength of the upper-
branch equilibrium states. The change in the state-space dy-
namics relates to the significant turbulence lifetime decrease.
Finally, the suppression of the lift-up effect may be the princi-
pal stabilisation mechanism of exact coherent structures.
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