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ABSTRACT 
A new deep learning model was proposed to predict the 

spatiotemporal development of pulsating turbulent pipe flow. 
The model is referred to as the time delay NN-RNN model 
which is the combination of the previous long short-term 
memory (LSTM) encoder-decoder model and time delay 
neural network (TDNN). The flow field obtained by direct 
numerical simulation (DNS) was used to train the model. 
Being trained on data with different pulsation parameters 
from the test data, the time delay NN-RNN model predicts 
the skin friction coefficient more accurately than the previous 
model. Therefore, the generalizability of the model is 
improved.  
 
 
BACKGROUND AND OBJECTIVES 

Energy loss due to friction drag is a problem in the 
transportation of oil and natural gas through pipelines. One 
of the methods to reduce the friction drag is pulsating control. 
Considering that the turbulent vortices decrease/increase 
during acceleration/deceleration, the pulsation can yield drag 
reduction effect by carefully choosing the relevant 
parameters.  

There have been many studies on drag reduction for 
pulsating turbulent flow. Manna and Vacca (2008) confirmed 
drag reduction rate up to 27% by large eddy simulation 
(LES) of pulsating turbulent pipe flow in the case where the 
amplitude of a sinusoidal wave of the streamwise pressure 
gradient to make the pulsation is very large. Lodahl et al. 
(1998) conducted experiments on pulsating turbulent pipe 
flow to investigate the variation of turbulence. The pulsating 
flow is regarded as a combination of oscillatory flow and 
current. It is found that the pulsating flow relaminarizes if the 
pulsating flow is oscillatory flow dominated and the 
oscillatory component of the flow is in the laminar flow 
regime.  

In recent years, machine learning has been increasingly 
applied to the various problem of fluid mechanics (Brunton 
et al., 2020). Fan et al. (2021) proposed the CNN+LSTM 
module as an efficient alternative to the synthetic eddy 
method (SEM) which is time-consuming. The module could 
accurately predict turbulence statistics even after a long time 
and achieve over 15 times speedup compared with SEM. 
Giannopoulos and Aider (2020) predicted the full-field 
dynamics of backward-facing step (BFS) flow by focused 
time-delay neural network (FTDNN). Different upstream 
local visual sensors, based on the velocity fields measured by 
time-resolved particle image velocimetry (PIV), were tested 
as inputs for the NN system. The NN system could predict 

with satisfying precision the global dynamics of the flow. On 
the other hand, Yamaguchi et al. (2019) constructed a LSTM 
encoder-decoder model which could predict the time 
evolution of the flow field in pulsating turbulent pipe flow. 
The model successfully predicted a pulsatile flow when its 
pulsation parameters are the same as those of training data, 
but it failed when they are different.  

The objective of this study is to improve the 
generalizability of the model. For that purpose, TDNN is 
introduced to the model of Yamaguchi et al. (2019). Then, 
the predictive performance of the model is evaluated when 
the training and predicting waves are different.  

 
 

CALCULATION METHOD  
 
 
DNS of Pulsating Turbulent Pipe Flow 

In this study, the flow field of pulsating turbulent pipe 
flow was calculated by DNS. Governing equations are the 
continuity and Navier-Stokes equations. A highly energy-
conservative second-order-accurate finite difference method 
for the cylindrical coordinate system (Fukagata and Kasagi, 
2002) is employed for the spatial discretization scheme. The 
memory-saving third-order accurate Runge-Kutta method 
(Spalart et al., 1991) for the advection term and the Crank-
Nicolson method for the diffusion term are employed for the 
time integration. The friction Reynolds number is set to Reτ = 
uτR/ν = 180, where uτ is the friction velocity based on mean 
wall shear stress, R the pipe radius, and ν the kinematic 
viscosity. The computational domain is shown in Fig. 1. Here, 
r, θ, and z denote the radial, circumferential, and axial 
directions, respectively. The number of computational cells 
is (Nr, Nθ, Nz) = (96, 128, 256), and grid resolution is (∆r+, 
R+∆θ, ∆z+) = (0.35−2.24, 8.83, 8.83). The radial grid width is 
small near the wall and large at the center of the pipe. Here, 
()+ denotes the value normalized by uτ and ν. The periodic 
boundary condition is used at θ and z directions, and the no-
slip boundary condition is used at the pipe wall.  

In the pulsating flow, the time change of spatially 
averaged streamwise pressure gradient is controlled to 
accelerate and decelerate the flow. In this study, the flow 
field is calculated by giving a sinusoidal pulsating wave as 
follows: 
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where A and T are amplitude and period, respectively. The 
angle brackets < > denotes spatial averaged value, and ()* 
denotes the value normalized by uτ and R. 
 
 
Deep Learning for DNS Data 

The time delay NN-RNN model shown in Fig. 2 was 
constructed to predict the time evolution of flow fields: 
velocity and pressure (ur

*, uθ
*, uz

*, p*) in r − z cross-section 
obtained by DNS. Here, the time interval of flow field ∆t* is 
set to 5×10−3. The time delay NN-RNN model consists of the 
encoder, TDNN, LSTM, and decoder. Inputs to LSTM are 
flow fields convoluted by the encoder to 1/32 and features of 
spatially averaged streamwise pressure gradient extracted by 
TDNN. LSTM predicts the time evolution of the low  

 
 
dimensional flow field. Then, the output of LSTM is 
deconvoluted by the decoder to the original size.  

In this study, TDNN was added to the model of 
Yamaguchi et al. (2019) to improve the generalizability of 
the model. TDNN is composed of three layers: input, hidden, 
and output layers as shown in Fig. 3. In addition to the 
pressure gradient at the current time, the pressure gradient up 
to k time steps before is also input into TDNN. Therefore, 
extracted features can be related to the time variation of the 
past pressure gradient. Several time steps k was tested and 
found k = 2 was the highest prediction accuracy. Thus, in this 
paper, we report the results of k = 2. The Adam algorithm is 
applied as the optimizer. The learning rate, the number of 
epochs, and the minibatch size are set to 0.001, 100, and 32, 
respectively. Here, the training data consist of 14,000 steps  

Figure 1. Computational domain. 
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Figure 2. Time delay NN-RNN model. 
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Figure 3. Structure of TDNN. 
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spanning 10 < t*< 80. The test data consist of 14,000 steps 
spanning 80 < t*< 150. Table 1 shows the amplitude and 
period of the sinusoidal pulsating wave for training data and 
test data. For each pulsating flow, one r − z cross-section is 
used for training and prediction. 
 
 
RESULTS 
 
 
Basic Characteristics of DNS Data 

The flow fields with the sinusoidal pulsating wave of its 
amplitude A* = 5 and period T* = 5 were calculated by DNS. 
Figure 4 shows the time variation of spatially averaged 
pressure gradient, bulk velocity ub

∗ , and skin friction 
coefficient Cf calculated by DNS. Here, the skin friction  
coefficient Cf is defined by the bulk velocity ub

* and the wall 
shear stress τw

*, as shown in Eq. 2.  
 
 

 

 
(2) 

 
 
The phase of the bulk velocity delays by π/2 than the 
spatially averaged pressure gradient. The skin friction 
coefficient decreases in acceleration, and vice versa. Thus, 
the pulsating turbulent pipe flow is the unsteady turbulent  
flow, in which bulk velocity and skin friction coefficient 
temporally change. 

 
 
 
 
 
 
 
 
 
 

Figure 5 shows visualization results of the high-speed 
and low-speed streaks, and vortex defined by the second 
invariant of velocity gradient tensor during acceleration and 
deceleration. It can be seen from the figure that the number 
of vortices decreases during acceleration and increases 
during deceleration. Comparing Figs. 4 and 5, it is found that 
the friction drag reduces by decreasing vortices during 
acceleration, and increases by increasing vortices during 
deceleration.  

Figure 6 shows the radial profiles of the phase-averaged 
streamwise velocity, RMS value of phase-averaged 
streamwise velocity fluctuations, and Reynolds shear stress 
respectively. The red and blue line indicate acceleration and 
deceleration. Here, each line is mean value of the phase 
average in each interval shown in the legend of the figure. 
The phase for 0 < t*/T* < 1/6, 1/6 < t*/T* < 1/3, and 1/3 < 
t*/T* < 1/2 represent the beginning, middle, and end of 
acceleration, respectively. The phase for 1/2 < t*/T* < 2/3, 2/3 
< t*/T* < 5/6, and 5/6 < t*/T* < 1 represent the beginning, 
middle, and end of deceleration, respectively. 

 
 
 

Red: u’+ > 3
Blue: u’+ < −3

Acceleration

White: Q+ = 0.03

Deceleration

Figure 5. Visualization results of pulsating turbulent flow with high-speed streak (red), low-speed streak (blue), isosurface of the 
second invariant of velocity gradient tensor (white). 

 

Figure 4. Time variation of spatially averaged pressure gradient, bulk velocity u b
∗, and skin friction coefficient Cf. 

Table 1. Pulsation parameters for training and test data. 
 

 (A*, T*) 

Training data (4, 5), (5, 4), (6, 5), (5, 6) 

Test data (5, 5) 
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The phase-averaged streamwise velocity has in all phases 

a minimum value near the wall and a maximum value at the 
pipe center and increases from near the wall to the pipe 
center. In the entire region from the wall to the pipe center, 
the streamwise velocity increases the beginning, middle, and 
end of acceleration, in that order. On the other hand, that 
decreases the beginning, middle, and end of deceleration, in 
that order. In other words, the streamwise velocity increases 
and decreases with the acceleration and deceleration of the 
pulsating flow. 

In the RMS value, it has a minimum value near the wall, 
increases from the viscous sub-layer to the buffer layer, and 
decreases from the buffer layer to the pipe center in all 
phases. The maximum RMS value increases from the 
beginning of acceleration to the end, while it decreases from 
the beginning of deceleration to the end. Therefore, in 
pulsating flow, turbulence increase with acceleration and 
decreases with deceleration.  

In the Reynold shear stress, the values are zero at the 
wall and the pipe center, and the values increase rapidly and 
then decrease slowly from the wall to the pipe center for all 
phases. The Reynolds shear stress during acceleration is 
lower than that during deceleration. Comparing Figs. 5 and 6, 
there is a high correlation between the increase or decrease in  
 
 

 
 
the vortex and the increase or decrease in the Reynolds shear 
stress due to the acceleration and the deceleration. Therefore, 
in pulsating flow, the vortices increase during the 
deceleration term, and the turbulent momentum transfer 
becomes more active. 

 
 

Generalizability of Time Delay NN-RNN Model 
Figure 7 shows the prediction results of phase-averaged 

streamwise velocity during the acceleration and deceleration 
terms along with the prediction results by the previous model 
without TDNN (Yamaguchi et al., 2019). The prediction 
results of both models reproduce the monotonic increase of 
the streamwise velocity from zero at the wall to the 
maximum at the center of the pipe. In the outer layer, the 
present model with TDNN has higher prediction accuracy 
than that without TDNN during the acceleration term. 

Figure 8 shows the prediction results of the RMS value 
of phase-averaged streamwise velocity fluctuations during 
the acceleration term and deceleration term. Focusing on the 
viscous sub-layer and the buffer layer, the accuracy of both 
the models is high during the acceleration term, however, the 
accuracy of the present model with TDNN is higher than that 
without TDNN during the deceleration term. On the other 
hand, focusing on the outer layer, the accuracy of both 
models is low in all phases. 

(a) Phase-averaged value (b) RMS value 

(c) Reynolds shear stress 

Figure 6. Radial profiles of phase-averaged streamwise velocity, RMS value of phase-averaged streamwise velocity fluctuations, 
and Reynolds shear stress.  

Acceleration

Deceleration
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Figure 9 shows the prediction and ground truth of phase-
averaged bulk velocity u*

b. The relative error and correlation 
coefficients are 3.8% and 0.98 without TDNN, −3.4%, and 
0.99 with TDNN, respectively. The correlation coefficients 
of both with TDNN and without TDNN are more than 0.95. 
The magnitude of the relative errors of both are less than 5 %. 
Hence, both models can predict the periodic change and the 
average value for one period with high accuracy. In the bulk 
velocity, the phase difference between ground truth and 
prediction with TDNN is smaller than without TDNN. It is 
because the time change of pulsating waves can be trained by 
TDNN.  

Figure 10 shows the prediction and ground truth of 
phase-averaged wall shear stress τ*

w. The relative error and 
correlation coefficients are −13.0% and 0.41 without TDNN, 
−6.1%, and 0.75 with TDNN, respectively. The correlation 
coefficient with TDNN is larger than that without TDNN, 
and the magnitude of the relative error with TDNN is smaller 
than without TDNN, which means that the prediction 
accuracy of the wall shear stress is improved when the 
TDNN is introduced. In addition, the prediction results of 
wall shear stress correspond with the ground truth at t*/T* 

=0.0 ~ 0.3 without TDNN, at t*/T* =0.0 ~ 0.5 with TDNN. In 
other words, it can be said that the introduction of TDNN 
improves prediction accuracy. However, the prediction 
accuracy is low at t*/T* =0.5 ~ 1.0 during deceleration. This 
is suggested by the lower accuracy of the RMS value near  

 
 
the wall during the deceleration term compared to the 
acceleration term. 

The phase-averaged bulk velocity and wall shear stress 
for each sinusoidal pulsating wave included in the training 
data are calculated, and then the averaged values for each of 
them are calculated. As a result, it is found that these values 
are consistent with the true values. Therefore, in the current 
parameter range, the response of the pulsating turbulent pipe 
flow is high linearity. Nevertheless, the generalizability of 
the training model is not sufficient because it does not predict 
statistics with very high accuracy. 

Figure 11 shows the prediction and ground truth of 
phase-averaged skin friction coefficient Cf. The relative error 
and correlation coefficients are −18.6% and 0.97 without 
TDNN, −1.0%, and 0.95 with TDNN, respectively. The 
correlation coefficients of both without TDNN and with 
TDNN are more than 0.95, which indicates that both models 
can predict the periodic change of the skin friction 
coefficient. On the other hand, because the absolute value of 
the relative error of the model with TDNN is smaller than 
that without TDNN, the model becomes to accurately predict 
the average of the skin friction coefficient to introduce 
TDNN. In other words, compared to the previous study, this 
study can accurately predict the skin friction coefficient, 
which determines ultimately the drag reduction effect. 
 
 

(a) Acceleration 

 
(b) Deceleration 

 Figure 7. Radial profiles of phase-averaged streamwise velocity. 

(a) Acceleration 

 
(b) Deceleration 

 Figure 8. Radial profiles of RMS value of phase-averaged streamwise velocity fluctuations. 
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CONCLUSIONS AND OUTLOOK 

The deep learning model predicted the spatiotemporal 
development of pulsating turbulent pipe flow. To improve 
the generalizability of the model, the time delay NN-RNN 
model was constructed by combining TDNN with the 
previous LSTM encoder-decoder model. The model has 
predicted flow fields for pulsating flow which are training 
data (A*, T*) = (4, 5), (5, 4), (6, 5), and (5, 6), and test data 
(A*, T*) = (5, 5). The new model can predict streamwise 
velocity and RMS value of that fluctuations more accurately 
than the previous model. Therefore, the generalizability of 
the model is improved. However, despite the high linearity of 
the pulsating flow response, the prediction of statistics for the 
bulk velocity and wall share stress is low accuracy. Hence, 
the generalizability of the training model for this study is not 
sufficient. 
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Figure 9. Prediction and ground truth of  
phase-averaged bulk velocity u*

b. 
Figure 10. Prediction and ground truth of  
phase-averaged wall shear stress τ*

w. 

Figure11. Prediction and ground truth of  
phase-averaged skin friction coefficient Cf. 


