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ABSTRACT
In this work, we propose the learning of feedback con-

trol laws with gradient-enriched machine learning control
(Cornejo Maceda et al., 2021, gMLC) algorithm. Gradient-
enriched machine learning control builds upon machine learn-
ing control (Duriez et al., 2016) and combines the explorative
capability of genetic programming and the fast convergence
of the downhill simplex gradient-descent method. Gradient-
enriched MLC is demonstrated on the stabilization of two
shear flows: a DNS of the flow past a cluster of three rotat-
ing cylinders—the fluidic pinball—and an open cavity flow
experiment. For both cases, gMLC optimized feedback con-
trol laws outperforming previous open-loop and closed-loop
controls with minimum actuation power. Moreover, the need
of feedback has been demonstrated, revealing that feedback is
a major feature for flow stabilization. Key enablers are auto-
mated machine learning algorithms augmented with gradient
search: explorative gradient method (Li et al., 2022) for the
open-loop parameter optimization and a gradient-enriched ma-
chine learning control for the feedback optimization. Finally,
gMLC learns the control law significantly faster than previ-
ously employed genetic programming control.

INTRODUCTION
Flow control is at the heart of many engineering appli-

cations. However, control design is challenged by the high-
dimensionality of the flow, the nonlinearities inherent to the
Navier-Stokes equations, and the time-delays between actu-
ation and sensing. Hence, most closed-loop control studies
of turbulence resort to a model-free approach. Genetic pro-

gramming control (GPC) has been pioneered by Dracopoulos
(1997) over 20 years ago and has been proven to be particu-
larly successful for nonlinear feedback turbulence control in
experiments. Machine learning control (Duriez et al., 2016),
based on GPC, has consistently outperformed existing opti-
mized control approaches, often with unexpected frequency
crosstalk mechanisms (Noack, 2019). GPC has a powerful ca-
pability to find new mechanisms (exploration) and populate the
best minima (exploitation). Yet, the exploitation is inefficient
leading to increasing redundant testing of similar control laws
with poor convergence to the minimum. This challenge is well
known and is addressed in this study with our new algorithm
gradient-enriched machine learning control (Cornejo Maceda
et al., 2021, gMLC).

In this work, we report on the stabilization of two shear
flows, a 2D numerical simulations of the fluidic pinball and the
open cavity flow experiment.

Our first demonstrator is the fluidic pinball. It consists
of three rotating cylinders in an incoming flow. The surpris-
ingly rich dynamics of the fluidic pinball motivate our choice.
Indeed, with increasing Reynolds number, the steady wake un-
dergoes a Hopf, then a pitchfork bifurcation until reaching
a chaotic regime (Deng et al., 2020). Moreover, the many
actuators allow to reproduce most common wake stabiliza-
tion approaches , like Coanda forcing, base bleed, low- and
high-frequency forcing, phasor control and circulation control
(Ishar et al., 2019). Finally, the rich unforced and controlled
dynamics mimics nonlinear behavior of turbulence while the
computation of the two-dimensional flow is manageable on
workstations. To summarize, the fluidic pinball is an attrac-
tive all-weather plant for non-trivial multiple-input multiple-
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output control dynamics. In this work, the goal is to stabilize
the flow to the symmetric steady solution by learning feedback
controllers directly from the plant thanks to gradient-enriched
machine learning control.

As for the open cavity, the control objective is to re-
duce the oscillations of the shear layer. Indeed, mitigation
of the shear layer oscillations is of great engineering interest
as the oscillations are related to aerodynamic drag and noise
for aerospace and transport applications. Stabilization of these
oscillations has been possible thanks to model-based meth-
ods for incompressible and compressible regimes. We refer
to Rowley & Williams (2006) and Cattafesta III et al. (2008)
for reviews of past successes of active flow control on the open
cavity. A limit of linear control approaches for the open cav-
ity, is the shift of oscillations of the cavity to other Rossiter
modes (Cabell et al., 2002; Williams et al., 2000) resulting
in multi-frequency or mode-switching regimes that compete
for the available energy. Controlling such regimes has been
possible in the past by Samimy et al. (2007), combining sev-
eral models in linear quadratic optimal controllers. However,
there is no general method for building control-oriented meth-
ods that includes the nonlinear frequency crosstalk between
modes. Hence, in this work we employ a model-free approach
based on machine learning to stabilize the shear layer oscilla-
tions and in particular a mode-switching regime.

PLANTS
The fluidic pinball—A MIMO control benchmark

As control benchmark problem, we chose the fluidic pin-
ball, the flow around three cylinders located at the tips of an
equilateral triangle pointing downstream. The fluidic pinball
is studied here as a multiple-input multiple-output (MIMO)
system. The actuation is performed by rotating each cylinder
independently and 9 velocity probes located downstream feed
back the flow velocity, see figure 1a. The velocity probes out-
side the centerline measure the streamwise velocity to follow
the passing of the vortices. As for the probes on the centerline,
they measure the spanwise velocity to characterize the sym-
metry of the flow. For this study, the Reynolds number based,
on the diameter of one cylinder, is set to Re = 100. In this
regime, the flow is beyond the first two bifurcations: A first
Hopf bifurcation at Re≈ 18 enabling the vortex shedding and
a pitchfork bifurcation at Re ≈ 68 deflecting the jet-like flow
upwards or downwards (Deng et al., 2020). Figure 1a shows
a snapshot of the fluidic pinball in the post-transient regime.
The mean flow (figure 1b), computed by averaging 1000 time
units, highlights the strong asymmetry of the flow.

The control goal is then the stabilization of the unstable
symmetric steady Navier-Stokes solution uuus (figure 1c). The
cost function JFP to minimize is the time-averaged L2-norm
of the difference between the instantaneous flow field and the
objective flow field:

JFP =
1

TFP

∫ t0+TFP
t0 j f p(t)dt

j f p(t) = ‖uuubbb(t)−uuus‖2
Ω

(1)

where t0 is the time when the actuation is turned on, TFP =
1000 time units, ub is the instantaneous flow field and || · ||2

Ω

denotes the spatial integration. The control transient is in-
cluded in the evaluation window to reach the steady solution
faster. The direct numerical simulations are carried out with
an in-house solver using a finite-element method third order

(a) Example snapshot of the unforced flow.

(b) Unforced mean flow.

(c) Symmetric steady solution.

(d) Mean field of the flow controlled with the gMLC law.

Figure 1: Vorticity fields of the unforced and controlled
flow for the fluidic pinball. The position of the velocity
sensors are denoted by green dots in (a).

accurate in time and space. We refer to (Deng et al., 2020) for
more details on the solver.

The open cavity experiment
For the experimental demonstration, we have chosen a

flow configuration gathering most of the mechanisms responsi-
ble for nonlinear interactions but keeping the self-organization
of the spatial structures still highly coherent, i.e. the flow
above an open cavity. We are interested in the stabilization of
the oscillating shear layer resulting of the interaction between
an incoming boundary layer and the cavity. For compress-
ible flows, the well-known flow-acoustic resonance or Rossiter
mechanism describes the self-sustained oscillations and fre-
quencies of the flow (Rowley & Williams, 2006). However,
for incompressible flows, there is no consensus on the mecha-
nism leading to self-sustained oscillations. Tuerke et al. (2020)
shows that Stuart-Landau type amplitude equation including
two distinct delay lines, associated with a backward wave time
and an intra-cavity overturning time, is able to predict the two
frequencies of a multi-frequency regime of the open cavity. In
this study, the control goal is to stabilize the flow by mitigat-
ing the self-oscillations of the shear layer with a single actuator
and a single sensor (figure 2). Our open cavity experiment is
then a single-input single-output (SISO) system. Our cavity
is D = 0.05m deep, W = 0.30m wide and its length and in-
coming velocity are chosen to enter two distinct regimes. The
first regime, referred in the following by narrow-bandwidth
regime displays one dominant mode ( fa ≈ 28.81Hz). This
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Figure 2: Schematic of the open cavity experiment and
the control loop. The incoming velocity profile is de-
noted in blue and the profile of the body force generated
by the DBD actuator in red. L, D and W denote, respec-
tively, the length, depth and width of the cavity. The
width is not represented. b, s and K are, respectively,
the actuation command, the sensor signal and the con-
trol law.

regime is achieved for L = 0.075m, U∞ = 2.13ms−1). The
second mode, referred in the following by mode-switching
regime, includes two competing modes ( fa = 27.31Hz and
f+ = 36.91Hz). A spectral analysis over time shows that the
existence time for each mode is between 15 and 20 s. This
regime is achieved for L = 0.0875m, U∞ = 2.23ms−1). We
refer to Basley et al. (2013) for more details on the narrow-
bandwidth and mode-switching regimes.

The forcing is achieved by a dielectric barrier discharge
(DBD) actuator located upstream at the receptivity point of the
cavity. The actuation command b is then the amplitude level
of a high-frequency carrier signal (3kV). The minimum value
of the actuation command is set to the ionization threshold of
the DBD actuator and the maximum value to the maximum
amplitude level that keeps a trace of dynamics in the spectrum.
The effect of the forcing is similar to a body force extended in
the spanwise direction. A hot-wire sensor downstream feeds
back the streamwise velocity enabling closed-loop control (see
figure 2). The spectra of the velocity downstream for the two
unforced regimes are depicted in black in figure 3a and 3b.

The control objective is then to reduce the energy associ-
ated to the main frequencies fa and f+ of the flow. A constant
forcing study at different actuation levels shows that a high am-
plitude steady forcing is enough to reduce the amplitude of the
frequency peaks, hence we decide the penalize the actuation
power. The cost function JOC is then the sum of two terms: Ja
defined as the ratio between the maximum values in the power
spectral density (PSD) of the unforced and controlled cases,
and Jb the actuation penalization term:

JOC = Ja + γJb

Ja =
maxPSD(uHW)

maxPSD(uHW,0)

Jb =
〈(b+1)2〉

4

(2)

where γ , the penalization parameter, is set to 1 as Ja and Jb are
both normalized by the unforced case and the maximum actua-
tion level respectively. 〈·〉 denotes a time average quantity. The
maximum of the PSD is detected in a limited frequency win-
dow including only the two main frequencies of the flow fa
and f+. The evaluation of each individual is set to 40s; This

(a) Narrow-bandwidth regime.

(b) Mode-switching regime.

Figure 3: Power Spectra of the open cavity experi-
ment for the narrow-bandwith and the mode-switching
regimes. Spectra associated to the unforced flow are de-
picted in black. The spectra resulting of the control by
the control law learned in the narrow-bandwidth (mode-
switching) are depicted in blue (red).

value balances good convergence of the statistics and practical-
ity as most experiments have a limited testing budget. More-
over with 40s, we assure that the trace of both frequencies ( fa
and f+) are present in the spectrum of the mode-switching
regime.

CONTROL PROBLEM AND METHODOLOGY
The flow control problem is to derive a mapping KKK be-

tween the outputs (sensors signals sss) and the inputs of the
system (actuation commands bbb) to achieve a control goal:
bbb = KKK(sss). KKK, also referred as control law is a scalar func-
tion for SISO control (case of the open cavity experiment) and
a vectorial function for MIMO control (case of the fluidic pin-
ball). Leveraging machine learning techniques for flow con-
trol relies on the reformulation of the flow control problem as
a functional regression problem where the goal is to derive the
optimal control KKK∗ that minimize the cost function J.

KKK∗ = argmin
K∈KKK

J(KKK) (3)

with Λ being the control law space. In general, equation (3)
is a challenging non-convex optimization problem including
several minima.

The employed algorithm for control law optimization is
gradient-enriched machine learning control (Cornejo Maceda
et al., 2021, gMLC). The algorithm is inspired by the ex-
plorative gradient method (Li et al., 2022, EGM) that com-
bines exploration to discover new minima and exploitation
with gradient-based approach for a fast convergence. Starting
point is machine learning control (Duriez et al., 2016, MLC)
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based genetic programming control (Dracopoulos, 1997). The
principle of MLC mimics the Darwinian natural selection to
optimize control laws, by generating a set, or a population of
random control laws that evolve through generations. Follow-
ing the evolutionary terminology, the control laws are also re-
ferred as individuals. The process of evolution relies on the re-
combination of most performing individuals from one genera-
tion to build the next generations of individuals. The recombi-
nation is carried out by genetic operators: crossover and muta-
tion (Li et al., 2019). MLC has been successfully employed in
dozens of experiment outperforming previous controllers often
by deriving nonlinear mechanisms (Noack, 2019). Like EGM,
MLC can be accelerated by including intermediate gradient
steps to exploit the local gradients in the search space. The
resulting algorithm is the gradient-enriched machine learning
control. Gradient-enriched MLC (figure 4) departs in two as-
pects from MLC. First, the concept of evolution from gen-
eration to generation is not adopted. The genetic operations
include all tested individuals. Second, the exploitation is ac-
celerated by downhill simplex iterations. The algorithm be-
gins with a broad exploration of the search space thanks to a
Monte Carlo sampling like MLC, generating NMC random in-
dividuals. Then NG new individuals are generated thanks to
crossover and mutation. This step is referred as an exploration
step as it is mainly expected to discover new minima. The
algorithm continues with an exploitation step carried out by
the downhill subplex algorithm (Rowan, 1990). The downhill
subplex algorithm is a variant of the downhill simplex algo-
rithm (Nelder & Mead, 1965) for infinite dimensions spaces.
In this step, the Nsub best individuals evaluated so far are se-
lected to form a subspace of finite dimension. New individuals
are then generated thanks to downhill simplex steps performed
in this subspace. The new individuals are linear combinations
of the Nsub bests. The downhill simplex steps are repeated
until NG individuals are generated to balance the exploration
and exploitation phase. The algorithm then continues with
new exploration-exploitation phases until a stopping criterion
is reached. In the exploration phases, the individuals to be
recombined are selected among all the individuals evaluated
thanks to a tournament method. The subspace basis is updated
with new individuals when those are better than ones in the
current basis. Figure 4 summarizes the gradient-enriched al-
gorithm. We refer to (Cornejo Maceda et al., 2021) for more
details on the gMLC algorithm.

RESULTS
Stabilization of the fluidic pinball

For the stabilization of the fluidic pinball, first, steady
symmetric forcing is optimized. The front cylinder does not
rotate and the two back cylinders rotate at constant speed in
opposite directions. A parametric study to derive the remain-
ing parameter reveals that a base bleeding solution leads to a
flow which is 49% closer to the symmetric solution than the
unforced attractor. Second, a general steady actuation is opti-
mized by allowing the independent rotation of all the cylinders
at constant speed. The three velocity parameters are optimized
with the explorative gradient method. Surprisingly, an asym-
metric actuation reduces the average distance between the flow
and the symmetric steady target solution further to 28% of the
unforced value. Third, gMLC is employ to optimize a feed-
back control law. The gMLC parameters chosen for the op-
timization are NMC = 100, NG = 50 and Nsub = 10. The ex-
ploration and exploitation phases are repeated until 1000 in-
dividuals are evaluated. These parameters are discussed in

Figure 4: Gradient-enriched machine learning algorithm
and principle sketch of the learning process in the search
space. The blue and red arrows denote how the new in-
dividuals are generated. Blue is for genetic operators
and red for linear combination. The fully colored search
space for the Monte Carlo initialization and the explo-
ration phase indicate that these phases allow to discover
control laws in the whole space. The yellow rectangle
symbolizes the subspace formed by the best individuals
where the exploitation is performed. The plant stands
for the flow system to control, i.e., in this study, the flu-
idic pinball or the open cavity experiment.

Cornejo Maceda et al. (2021). The feedback control optimized
with gMLC brings the flow even closer to the steady target so-
lution reducing the cost function to 20% of the unforced value
with small actuation power. The actuation is a combination of
asymmetric steady forcing and phasor control. The resulting
mean flow (figure 1d) is similar to the steady target solution,
as the two vorticity branches reach the end of the computation
domain and the jet between the two back cylinders is almost
statistically symmetric. The slight deflection of the near jet
may be related to the asymmetry of the control law. The vor-
ticity branches are also vectored towards the centerline.

Moreover, feedback plays a decisive role in the stabiliza-
tion of the fluidic pinball with the gMLC control law. Indeed,
the actuation commands associated to the gMLC control in-
clude low-amplitude unsteady components. However, despite
being small, the unsteady component is a key feature for stabi-
lization as an averaged actuation failed to bring the flow close
to the symmetric steady solution, achieving a relative cost of
only 59%.

Finally, a comparison with MLC reveals that gMLC
learns more performing individuals and with lesser evaluated
individuals.

Feedback control of the open cavity experiment
In this section, the gMLC algorithm is employed to sta-

bilize the narrow-bandwidth and the mode-switching regime.
The same gMLC parameters as for the fluidic pinball are em-
ployed. For the narrow-bandwidth regime, gMLC optimized a
feedback control reducing the cost JOC by 98%, which corre-
sponds to a 99% reduction of the fluctuation energy with less
than 1% of the maximum actuation level. We note that the re-
duction of the main peak of the spectrum fa comes with the
increase of the frequency f+ associated with the second mode
of the flow, see the spectrum blue in figure 3a. For the mode-
switching regime, gMLC derived a feedback control law that
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reduce the cost by 94%, which corresponds to 97% reduction
of the fluctuation energy with 2% of the maximum actuation
level. The latter control law has been able to reduce the power
associated to both frequencies fa and f+, see the spectrum red
in figure 3b.

The effectiveness of the control is also tested by evalu-
ating each control in the other regime. Expectedly, the law
learned in the narrow-bandwidth regime is only able to par-
tially control the mode-switching regime; the amplitude of the
main peak at fa is reduced but the peak at f+ remains, see the
spectrum blue in figure 3b. Surprisingly, the law learned in
the mode-switching regime was able to reduce the main peak
at fa while preventing the growth of the peak at f+, see the
spectrum red in figure 3a. Therefore, this study shows the ben-
efit of learning feedback control laws in complex regimes as
the richness of the regime is reflected in the control laws effi-
ciency.

Moreover, like for the fluidic pinball, the need of feedback
has been demonstrated to be an essential feature to mitigate the
oscillations of the cavity. The actuation commands employed
during the control of the narrow-bandwidth regime haven been
recorded and employed as open-loop control commands. The
resulting spectra show that such control is enable to control the
main mode of the flow at frequency fa. This tests show that
both control laws effectively operate in a closed-loop manner.

Finally, like for the fluidic pinball, gMLC outperforms
MLC both in terms of performance of the final solution and
convergence speed.

CONCLUSIONS
In this study, we employ the gradient-enriched machine

learning control for an automated learning of feedback con-
trol laws stabilizing the flow past a cluster of three cylinders—
the fluidic pinball—and the open cavity flow in two regimes:
one dominated by one single mode and one where two modes
compete. The optimized feedback control laws achieve not
only the best performance so far compared to previously em-
ployed steady actuation but also with small actuation power.
Moreover, the necessity of feedback for the control has been
demonstrated. The presented stabilizations are expected to
be independent of the employed optimizer as different ap-
proaches lead to very similar results. The chosen optimizer
balances exploration (search for better minima) and exploita-
tion (downhill descend of found minima). The automated
learning of feedback control laws has been significantly accel-
erated by intermittently adding gradient-based descends, out-
performing MLC. Building on this success, we believe that
gradient-enriched MLC will greatly accelerate the optimiza-
tion of control laws for MIMO control experiments including
a large number of actuators and sensors. Recent experimen-
tal applications of gMLC include successful drag reduction of
a generic truck model under yaw and lift increase of a high-
Reynolds number airfoil.
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