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ABSTRACT
Turbulent helicity is known to be generated in the bound-

ary layer when the system is rotating on an axis perpendicular
to the wall. In order to investigate the production and transport
mechanism, we used LES of wall-normal rotating turbulent
channel flow to examine the contribution of each term in the
budgets of the turbulent helicity and its three parts ⟨ū′ · ω̄x

′⟩,
⟨v̄′ · ω̄y

′⟩, and ⟨w̄′ · ω̄z
′⟩. We found that the pressure-diffusion

term had the largest contribution to the generation of the tur-
bulent helicity throughout the whole region. However, when
we decompose the turbulent helicity into three terms, the con-
tribution of the production term is the largest in the budgets of
⟨ū′ · ω̄x

′⟩ and ⟨w̄′ · ω̄z
′⟩, which are superior to ⟨v̄′ · ω̄y

′⟩. The
pressure term contributes to ⟨v̄′ · ω̄y

′⟩, and is redistributed to
⟨w̄′ · ω̄z

′⟩ to decrease the absolute value of ⟨w̄′ · ω̄z
′⟩. Because

⟨w̄′ · ω̄z
′⟩ has opposite sign to ⟨ū′ · ω̄x

′⟩, ⟨ū′ · ω̄x
′⟩ becomes the

biggest term of three and forms positive helicity near the wall
and negative helicity away from the wall. It was shown that a
subtle balance of ⟨ū′ ·ω̄x

′⟩ and ⟨w̄′ ·ω̄z
′⟩ accounts for the profile

of the total helicity.

INTROODUCTION
Fluid motions such as atmospheric and oceanic flows and

convection of molten iron in the outer core are accompanied by
large-scale rotational motions such as the rotation of the Earth.
It has been pointed out that magnetic and fluid structures such
as geomagnetic fields and typhoons are often generated and
maintained by helical turbulent flow fields against eddy vis-
cosity and anomalous resistance(Yokoi et al., 1993; Inagaki
et al., 2017). The mechanisms that maintain such large-scale
magnetic fields and vortices have been intensively studied es-
pecially in the field of magnetohydrodynamic flows. One of
the invariants that characterize the helical motion is helicity,
which is a conserved quantity defined as the inner product of
velocity uuu and vorticity ωωω = ∇∇∇××× uuu, and is known to play an
important role in the α effect, one of the mechanisms of mag-
netic field generation in magnetohydrodynamics.

The model of helicity was proposed by Yokoi et al.,
(1993). In this model, the dissipation rate of helicity, χhαα ,

for example, can be expressed by χhαα =Ch(ε/K)h where tur-
bulent energy K, the dissipation rate ε , and helicity h, and
Ch is model constant. However, there is no verification that
discusses how accurate this model is, so we analyze the bud-
get terms of helicity and discuss how the helicity is generated,
transported, and dissipates.

In order to generate helicity, which is a pseudo-scalar
quantity represented by the inner product of the axial and polar
vectors, it is necessary to break a mirror symmetry. One of the
methods to provide a helicity is a rotation of the system. In this
study, we add a rotation of the system vertical to the wall of the
channel flow. It was shown by Deusebio et al.(2014) that posi-
tive turbulent helicity is generated near the wall by production
term and negative turbulent helicity is generated away from the
wall by pressure diffusion term when the rotation vector of the
system is vertically upward in the Ekman boundary layer.

In this study, we analyzed the production and transport
mechanism of turbulent helicity by using the LES of turbu-
lent channel flow with wall-normal rotation in order to im-
prove the RANS turbulence model. We use LES to calcu-
late in the case of high Reynolds numbers for future perspec-
tive. This is because to discuss the negative helicity away
from the wall, we should reduce the effect from the wall
for the accurate analysis. Since the turbulent helicity is dis-
tributed at low wavenumbers (Minnini, 2009), the turbulent
helicity is approximated only by grid-scale physical quantities
h= ⟨uuu′ ·ωωω ′⟩= ⟨ūuu′ ·ω̄ωω ′⟩+⟨uuu” ·ωωω”⟩∼ ⟨ūuu′ ·ω̄ωω ′⟩ where ⟨ ⟩ denotes
ensemble averaging, u′(= u−⟨u⟩) is the fluctuation, and ū and
u” are grid-scale and subgrid-scale velocities. Here, we further
decompose the helicity into three parts as ⟨ū′ · ω̄x

′⟩, ⟨v̄′ · ω̄y
′⟩,

and ⟨w̄′ · ω̄z
′⟩ and examine the contribution of each term in the

budget equation for each term. In this study, we deal with the
case where both the rotation and Reynolds number are smaller
than the study reported by Deusebio et al. (2014).

METHOD
The governing equations for the turbulent flow in a wall-

normal rotating channel are grid-scale Navier-Stokes equa-
tions for an incompressible fluid. We use the SGS model
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for approximating small scales. To normalize the equations,
the friction velocity of the non-rotating channel flow uτ =√

| νdU/dy | |y=wall is used as the velocity scale, and the half-
height of the channel δ as the length scale. Then the non-
dimensional equations are given as

∂ ūi

∂ t
=− ∂

∂x j
ūiū j −

∂
∂xi

p̄

+
∂

∂x j
[(νS +ν)S̄i j]+2εi jkū jΩF

k

(1)

∂
∂xi

ūi = 0 (2)
where

S̄i j =
∂ ūi

∂x j
+

∂ ū j

∂xi
(3)

The sketch of the wall-normal rotating channel is shown
in figure 1. The boundary conditions in the x- and z-directions
are periodic boundaries, and the boundary conditions in the
y-direction are solid wall boundary conditions with non-slip
conditions. The size of the computational domain is set to
Lx × Ly × Lz = 4πδ × 2δ × 2πδ . As shown in figure 1, the
direction which has a constant pressure gradient is the x-
direction, the wall vertical direction is the y-direction, and
the span direction is the z-direction. The rotation axis direc-
tion is the y-direction. The channel half-width was set as δ,
and the value at the center of the channel was set as the ori-
gin of the y-coordinate. Therefore, the mean pressure gradient
−∂x⟨p⟩= u2

τ/δ = 1.
To solve the incompressible Grid-Scale Navier-Stokes

equations (1) and (2), the second-order Adams-Bashforth
method is used for the time integral, the second-order central
difference is used for the spatial difference, and to solve the
Poisson equation for pressure, FFT is used in the x-z direc-
tions.The number of computational grids is 64×64×64, and
the time width is 2.5×10−3.

In the y-direction, non-uniform grid defined by equation
(4) was used(Moin and Kim, 1982). For the wall function fW
attach to the eddy viscosity coefficient νS, the Van-Driest type
equation (8) is adopted. Equation (9) is used for the model
coefficients for νS.

y j =
1
a

tanh(b(−1+
2 j
Ny

)) (0 ≥ j ≥ Ny) = 0 (4)

a = 0.98346,b = tanh−1(a) (5)

νS = (CS fW ∆)2

√
S̄i jS̄i j

2
(6)

∆ =
√

∆x∆y∆z (7)

fW = 1− exp(−y+
Ap

) (8)

CS = 0.1,Ap = 25 (9)

Table 1 shows the non-dimensional parameters used in
this study. The Rossby number Roτ represents the ratio of the
advection term to the Coriolis term, and the smaller it is, the
more dominant the Coriolis force becomes. Since the Rossby
number is quite large in this study, the Coriolis force is ex-
pected to contribute only to the mean velocity with a large
spatial scale. The Ekman number Ekτ represents the ratio of

the viscous term to the Coriolis term. In this study, we discuss
how helicity is generated and transported in the case of weak
rotation. The equation for ⟨ūα ′ · ω̄α ′⟩ for grid-scale Reynolds-
averaged turbulent helicity in channel flow is

D⟨ūα ′ · ω̄α ′⟩
Dt

=Pαα +Παα +χhαα −∇ · tpressαα

−∇ · tturbαα −∇ · tviscαα + rαα

(10)

where Pαα : generation term, Παα : pressure strain correlation
term, χhαα : dissipation term, ∇ · tpressαα : pressure diffusion
term, ∇ · tturbαα : turbulent diffusion term, ∇ · tviscαα : viscous
diffusion term, rαα : transport term due to Coriolis force

Pxx =−⟨ū′v̄′⟩∂Ωx

∂y
− (⟨v̄′

ω̄
′
x⟩−⟨ū′

ω̄
′
y⟩)

∂U
∂y

(11)

Pzz =−⟨v̄′w̄′⟩∂Ωz

∂y
− (⟨v̄′

ω̄
′
z⟩−⟨w̄′

ω̄
′
y⟩)

∂W
∂y

(12)

Παα = ⟨p̄′
∂ω̄ ′

α
∂xα

⟩ (13)

χhαα = 2⟨[(νS +ν)S̄α j]
′ ∂ω̄ ′

α
∂x j

⟩ (14)

∇ · tpressyy =
∂
∂y

⟨p̄
′
ω̄

′
y⟩ (15)

∇ · tturbαα =
∂
∂y

[⟨ū′
α ω̄

′
α v̄

′⟩−⟨ū′2
α ω̄

′
y⟩] (16)

∇ · tviscαα =
∂
∂y

[−2⟨{(νS +ν)S̄αy}
′
ω̄

′
α⟩]

+
∂
∂y

[−⟨ū′ ∂
∂xα

{(νS +ν)S̄zα}
′⟩

+ ⟨w̄′ ∂
∂xα

{(νS +ν)S̄xα}
′⟩]

(17)

ryy = 2ΩF ∂
∂y

⟨v̄′2⟩ (18)

Here, ⟨ ⟩ represents the average in the x-z plane and in time.
α = x,y,z and no summation is taken for αα . All terms not
shown in (11)-(18) are zero.

RESULT
Mean Velocity

The profiles of the mean velocity in the streamwise and
spanwise directions, U and W , are shown in figures 2(a) and
(b). As the rotation is imposed, the spanwise velocity W is pro-
duced and maintained. When the rotation increases, the span-
wise mean velocity increases while the streamwise mean ve-
locity decreases. Compared with Liu’s DNS(Liu et.al. 2005),
our LES calculations qualitatively reproduce the DNS results.

Helicity
Figure 3 shows the distribution of turbulent helicity and

the intensities of turbulent helicity ⟨ū′ · ω̄x
′⟩, ⟨v̄′ · ω̄y

′⟩, ⟨w̄′ ·
ω̄z

′⟩ for Nτ = 0,0.01,0.02. Since all of the distributions were
antisymmetric across the channel, we will discuss about the
lower-half of the channel. Turbulent helicity generated and
maintained positive values for −1 < y < −0.9 and negative
values for −0.9 < y < 0. The relationship between the sign

2



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan, July 19–22, 2022

of the turbulent helicity and the direction of the given rotation
is consistent with the results of Deusebio et al. (2014). By
decomposing the turbulent helicity into three terms, we can
see in which terms the turbulent helicity is dominant. ⟨ū′ · ω̄x

′⟩
and ⟨w̄′ ·ω̄z

′⟩ are about the same size and are 20-30 times larger
than ⟨v̄′ · ω̄y

′⟩. Since ⟨ū′ · ω̄x
′⟩ and ⟨w̄′ · ω̄z

′⟩ are in opposite
phases to each other, h is about 1/6 to 1/3 times as large as ⟨ū′ ·
ω̄x

′⟩, but still larger than ⟨v̄′ · ω̄y
′⟩. Since ⟨ū′ · ω̄x

′⟩ is slightly
larger than ⟨w̄′ · ω̄z

′⟩, the phase of h and ⟨ū′ · ω̄x
′⟩ are the same.

Comparing the distributions of ⟨ū′ · ω̄x
′⟩ and ⟨w̄′ · ω̄z

′⟩ for each
rotational parameter, both values are roughly proportional to
the rotational parameter for −1 < y < −0.9, which is close
to the wall. In contrast, for −0.9 < y < 0, the variation in
⟨w̄′ · ω̄z

′⟩ is larger than that in ⟨ū′ · ω̄x
′⟩. In the case of Nτ =

0.01, further away from the wall, at −0.7 < y < 0, ⟨w̄′ · ω̄z
′⟩

had a much smaller value than ⟨ū′ · ω̄x
′⟩. Since the value of

⟨ū′ · ω̄x
′⟩ did not cancel out with the other terms, h was large

enough to be compared to the peak value even near the center
of the channel.

Budget of Helicity
The budgets of turbulent helicity h and its intensities in

each direction are shown in figures 4 and 5. First, As it is
shown in figures 3(a), 4(a) and 5(a), the positive helicity in
the region around −1 < y <−0.9 is produced by the pressure-
diffusion term, and production term with almost the same con-
tribution. The largest contribution of the pressure-diffusion
term is different from the result of Deusebio et al.(2014),
where the contribution of the generation term was the largest
when the rotation was stronger. On the contrary, the viscous
diffusion and viscous dissipation terms contributed to attenu-
ation of the positive helicity in this region. The viscous diffu-
sion terms transported the positive helicity away from the wall
and helped to equalize the helical structure. The viscous dissi-
pation also generally contributed to the dissipation of the pos-
itive helicity. However, there is a gap between the point where
the positive and negative helicity switched and the point where
the viscous dissipation and viscous diffusion terms switched,
so that around y =−0.9, where the helicity switched, the con-
tribution was not in the direction of positive helicity dissipa-
tion. There isn’t enough evidence to say that without looking
at the spectrum of helicity, but it is thought that viscous dis-
sipation is not simply proportional to helicity like the model
of Yokoi et al., (1993) because it works on a small scale. The
turbulent diffusion term works in this region to transport the
positive helicity from the region a little farther from the wall
to the vicinity of the wall. On the other hand, if we focus on the
mechanism of negative helicity generation in the region away
from the wall (y >−0.9), we found that the turbulent diffusion
term contributes the most to the generation of negative helicity
from figure 5(a) to about −0.9 < y <−0.8 in the same section,
and the pressure diffusion term contributes the most to the gen-
eration of negative helicity at y >−0.8. The fact that the pres-
sure diffusion term was effective farthest from the wall was
in agreement with the study by Deusebio et al. (2014). The
turbulent transport term transports the positive helicity from
the lower side to the upper side of the channel and negative
helicity from the upper side to the lower side of the channel.
Viscous dissipation and viscous diffusion generally contribute
to the reduction of the absolute value of helicity.

Next, we consider the budgets of three terms of the tur-
bulent helicity ⟨ū′ω̄ ′

x⟩, ⟨v̄′ω̄ ′
y⟩, and ⟨w̄′ω̄ ′

z⟩. First, we discuss
⟨v̄′ω̄ ′

y⟩, where the pressure diffusion term was the most impor-
tant contributor to the generation of turbulent helicity. Figures
4 (c) and 5 (c) show that the pressure diffusion term acting

on ⟨v̄′ω̄ ′
y⟩ is almost balanced by the pressure strain correlation

term. The pressure strain correlation term represents the re-
distribution from ⟨v̄′ω̄ ′

y⟩ to the other terms, and since almost
all of them are redistributed, ⟨v̄′ω̄ ′

y⟩ itself was small and the
dissipation term was also small. The redistribution was bi-
ased toward ⟨w̄′ω̄ ′

z⟩ rather than ⟨ū′ω̄ ′
x⟩ (Fig. 4 and 5 (b,d)).

The redistributed helicity acted to reduce the absolute value of
⟨w̄′ω̄ ′

z⟩ because it was opposite to the sign of ⟨w̄′ω̄ ′
z⟩. On the

other hand, ⟨ū′ω̄ ′
x⟩ had no effect of redistribution and its abso-

lute value was not reduced, so the resulting turbulent helicity
h represented the same sign as ⟨ū′ω̄ ′

x⟩.
In the case of Nτ = 0.01 and Nτ = 0.02, where the rota-

tion is relatively small, the pressure-diffusion term is signifi-
cantly related to the turbulent helicity generation mechanism
in the whole region. Near the wall, the production term was
also effective. The pressure diffusion term transports the pos-
itive helicity towards the wall. Viscous dissipation and vis-
cous diffusion generally contributed in the direction of reduc-
ing the absolute value of helicity. Looking at each of the three
decomposition terms of the turbulent helicity h, ⟨ū′ω̄ ′

x⟩ and
⟨w̄′ω̄ ′

z⟩, so that the magnitudes of these two terms are larger
than the sum of all three terms h. Near the center of the chan-
nel, −0.5 < y < 0, the ⟨v̄′ω̄ ′

y⟩ is generated by the pressure dif-
fusion term and the ⟨w̄′ω̄ ′

z⟩ is generated by the production term
were redistributed and canceled by the pressure redistribution
term. The ⟨ū′ω̄ ′

x⟩ was generated by the production term with-
out any contribution from the other helicity by the pressure
redistribution term and dissipated by the term. In addition, be-
cause of the weak rotation in this study, the transport term due
to the Coriolis force had little effect on the helicity.

The variation in turbulent helicity with increasing the ro-
tation parameter in figure 5 shows that the negative turbulent
helicity decreases in the region −0.9 < y <−0.8. Comparing
the contribution of each term in the budgets of turbulent helic-
ity in figures 4(a) and 5(a), most of the budgets doubled when
rotation parameter ΩF doubled, however, the effect of the neg-
ative magnitude of the turbulent diffusion term decreases in
this region, indicating that this change is due to the turbulent
diffusion term. As for the reason for the decrease in the tur-
bulent diffusion term, from the study of Liu et al. (2005), it is
found that the turbulent energy decreases when the rotation is
increased, while equation (16) shows that the turbulent energy
has a positive effect on the turbulent diffusion term.

CONCLUSIONS
To discuss the generation mechanism of turbulent helicity,

we evaluate the distribution of turbulent helicity and its three
parts by using LES of channel turbulence rotating normal to
the wall. The positive turbulent helicity is generated near the
wall by the production term and pressure diffusion term and
the negative turbulent helicity is generated away from the wall
by the turbulent transport term and pressure diffusion term. In
addition, we found that ⟨v̄′ · ω̄y

′⟩ is generated by pressure dif-
fusion term and is redistributed to ⟨w̄′ · ω̄z

′⟩, which makes its
absolute value smaller. Because the magnitude of ⟨ū′ · ω̄x

′⟩ is
slightly greater than that of ⟨w̄′ · ω̄z

′⟩, the total helicity h be-
comes positive near the wall, −1 < y < −0.9, and negative
away from the wall, −0.9 < y < 0. It was shown that a subtle
balance of ⟨ū′ · ω̄x

′⟩ and ⟨w̄′ · ω̄z
′⟩ accounts for the profile of

total helicity h. If we increase the parameter of the rotation to
double, most of the budgets get doubled but the effect of turbu-
lent diffusion decreases, this is because the turbulent diffusion
probably monotonically decreases when turbulent energy de-
creases as rotation increases.
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Table 1: Parameters of simulations

Reτ ΩF Nτ Roτ Ekτ
194 0 0 ∞ ∞
194 0.005 0.01 200 1.03
194 0.01 0.02 100 0.515

\it{U}(\it{y})

x

y

z

Ω0

U(y)
W(y)

 - ∂p/∂x

Figure 1: Configuration of wall-normal rotating channel
flow

Figure 2: Profiles of the mean velocities: (a) streamwise
component; (b) spanwise component
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Figure 3: (a) Turbulent helicity h and its three parts, (b)
⟨ū′ · ω̄x

′⟩, (c)⟨v̄′ · ω̄y
′⟩ and (d)⟨w̄′ · ω̄z

′⟩
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Figure 4: Budgets of (a) turbulent helicity h and its three
parts (b) ⟨ū′ ·ω̄x

′⟩, (c)⟨v̄′ ·ω̄y
′⟩ and (d)⟨w̄′ ·ω̄z

′⟩, when Nτ =
0.01. The inset is the magnified view around the center of
the channel.
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Figure 5: Budgets of (a) turbulent helicity h and its three
parts (b) ⟨ū′ ·ω̄x

′⟩, (c)⟨v̄′ ·ω̄y
′⟩ and (d)⟨w̄′ ·ω̄z

′⟩, when Nτ =
0.02. The inset is the magnified view around the center of
the channel.
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