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ABSTRACT
Bispectral analysis was applied to the attached eddy

model of wall-turbulence in order to examine whether the lin-
ear superposition of attached eddies can exhibit the spectral
signature of non-linear, triadic scale interactions. Traditional
analysis of scale interactions in turbulence has focused on cor-
relations between filtered velocity signals of large- and small-
scale motions. In contrast, the bispectrum provides a natural
measure of non-linear scale interactions without filtering. The
magnitude of the bispectrum represents the strength of the non-
linear coupling, while the phase of the bispectrum represents a
delay within the triadic interaction. In this study we utilized a
numerical implementation of the attached eddy model to gen-
erate an ensemble of synthetic velocity fields, and we com-
pared the averaged bispectrum of these fields to a DNS chan-
nel flow. The linear superposition of discrete hairpin packets
was found to produce a similar bicoherence signature to that
of velocity fields generated via true non-linear interactions, al-
though the nature of the wavenumber coupling differed sig-
nificantly. The biphase behavior of the attached eddy model
also differed from the DNS. Tentative interpretations of both
of these differences are offered in the context of the linear su-
perposition mechanism, itself.

BACKGROUND
Scale-Interactions In Wall-bounded Turbulence

The interactions between large- and small-scale features
of wall-bounded turbulence represent the primary mechanism
for energy transfer in turbulence and thus a key target for de-
veloping turbulence models and efficient flow control strate-
gies. Bandyopadhyay & Hussain (1984) first proposed a cross-
correlation diagnostic to measure the relationship between the
filtered large- and small-scale signals of a turbulent shear flow,
and showed that the two scales are related in a way that varies
across the width of the shear layer. This approach was later
refined and extended by Mathis et al. (2009) and others who
reported that large- and small-scale motions were positively
correlated near the wall and inversely correlated near the free-

stream of a turbulent boundary layer, in a pattern reminiscent
of the streamwise skewness profile. The correlation between
the different scales has been variously interpreted as the result
of amplitude or frequency modulation of the envelope of small
scale motions by large scales, or a spatial phase delay between
the scales.

Duvvuri & McKeon (2015) performed a formal analy-
sis of the scale correlation coefficient which showed that de-
spite the somewhat artificial filtering of the velocity signal into
large- and small-scale components, in reality the correlation
coefficient represented interactions across three triadically-
coupled scales. This observation is a direct consequence of the
convective non-linearity of the incompressible Navier Stokes
equations when written in spectral form, which allows only
non-linear interactions between triadically coupled wavenum-
bers k′, k′′, and k = k′ + k′′. In light of this, Cui & Ja-
cobi (2021) proposed that a non-linear diagnostic tool which
accounts for the three distinct wavenumbers would be better
suited to the scale-interaction analysis than the traditional two-
component, cross-correlation.

Bispectral Analysis
The type of quadratic, non-linear interactions generated

through turbulent convection are naturally described by the
bispectrum, B(k′,k′′), which is the third-order spectrum of a
signal, u(x), defined as:

B(k′,k′′) =
〈
û(k′)û(k′′)û∗(k′+ k′′)

〉
. (1)

Just as the sum of the traditional, second-order power spectrum
is related to the statistical variance, 〈u2〉, the bispectrum is re-
lated to the statistical skewness 〈u3〉 by 〈u3〉= ∑k′,k′′ B(k′,k′′).
However, unlike the real-valued power spectrum, the com-
plex bispectrum preserves phase information between triadi-
cally interacting modes in addition to the amplitude informa-
tion which describes the magnitude of the triadic coupling.

Recently, the bispectrum has received increased inter-
est due to its preservation of triadic interaction information.
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Figure 1: (a) The streamwise, normalized bispectrum (bico-
herence), b(k′′,k′), of a turbulent channel flow DNS evaluated
at y+ ≈ 281. Note the high level of bicoherence associated
with the LSMs circled in the red ellipse. (b) The corresponding
biphase map, β (k′′,k′), marked with two different phase loca-
tions corresponding to an interaction between (c) two LSMs
and (d) an LSM with a smaller scale motion. The quadratic
phase-coupled (QPC) interaction and phase delay for the two
scales are illustrated schematically in panels (c) and (d) (cor-
responding to the circular marks), where the phase delay, β ,
is illustrated spatially but in reality represents a more compli-
cated function of the interacting modes.

Schmidt (2020) defined a bispectral modal decomposition for
low-order representation of turbulent flows. Cui & Jacobi
(2021) utilized the normalized amplitude (bicoherence, b) and
phase (biphase, β ) of the bispectrum to study the scale interac-
tions in a turbulent channel flow and found that the dominant
coupling between scales was associated with the large-scale
motions (LSMs) of the channel flow interacting with a range
of other scales, from other LSMs down to smaller scales, as
shown in figure 1(a). They also showed that the biphase be-
tween the triadic interactions varied with scale size and could
be interpreted as an interaction delay associated with the scale
interactions, as illustrated in figure 1(b). However, the precise
meaning of this interaction delay was not fully explored. In
particular, does the biphase represent an interaction delay due
to spatial proximity of the different scale velocity modes, or
is it a result of temporal proximity due to variations in their
respective convection velocities? And is the interaction delay
associated with the particular geometry of the velocity mode
shapes? These questions have important implications for mod-
eling efforts involving the superposition of large-scale veloc-
ity modes to reconstruct turbulent flow fields. In order to ad-
dress these questions, we apply the bispectral analysis to ve-
locity fields constructed from a physically-meaningful model
of large-scale motions – the attached eddy model, which in-
volves only linear, spatial-superposition.

METHOD
Simulation via Attached Eddy Model

Townsend’s attached eddy model presents a fundamen-
tally physical approach to explaining the statistical properties
of wall-bounded turbulence by constructing the turbulent ve-
locity field via the superposition of hierarchies of self-similar
eddies. Although first applied analytically to understanding
the logarithmic mean velocity profile, it was later extended by

Dimension Inner Units
Height H ≈ 128
Leg Gaussian Vorticity Std. σ = 0.05H ≈ 6.4
Leg Effective Radius R≈ 3σ ≈ 19.2
Streamwise Spacing b = 0.4H ≈ 50
Packet Length Lp = 6b≈ 300
Vertex Angle between Legs 45◦

Hairpin Inclination Angle θ = 80◦

Packet Inclination Angle α = 10◦

Number of Radial Fibers nr = 20
Numer of Azimuthal Fibers nt = 40
Distance Between Radial Fibers dr = R/nr ≈ 0.96
Azimuthal Distance Between Fibers R(2π/nt)≈ 3
Fiber Longitudinal Segment Length ≈ 5.7

Table 1: Top: The dimensions for the self-similar hairpin ge-
ometry corresponding to the smallest hairpin packet, defined
by its height, H. Packets are sampled uniformly from the fam-
ily of packets with heights {1,2,4,8,16}H, where all length
dimensions in the table are scaled proportionally. Bottom: The
dimensions of the discrete fibers used to represent the hairpin
vorticity distribution for the Biot-Savart calculation.

Perry & Chong (1982) to describe higher order statistics as
well, via spectral analysis. Perry (1987) also applied the at-
tached eddy model numerically by assuming a particular form
of the hairpin vortex, calculating the induced velocity field,
and distributing these induced velocities randomly in space ac-
cording to a reciprocal distribution with respect to eddy size.
de Silva et al. (2016) and Eich et al. (2020) have since refined
this numerical approach to better align the predicted velocity
fields with experiments.

In the present study, we implemented a version of the
numerical attached eddy model, following the hairpin packet
specifications of de Silva et al. (2016). Each individual hair-
pin was composed of a bundle of discrete, parabolic vortex
fibers, with a Gaussian vorticity distribution with standard de-
viation, σ across the bundle. The fiber bundles were arranged
to construct the individual hairpins and then a packet of mul-
tiple hairpins with maximum height, H = 128 (inner units), as
shown in figure 2. The geometric parameters describing the
individual hairpins and the discrete fibers are detailed in table
1.

The Biot-Savart law was then applied to the vorticity field
described by the fibers in order to generate the induced ve-
locity field from the entire packet. Because the packets were
geometrically self-similar, they could be scaled up in factors
of 2nH to obtain larger packets, where n represents the num-
ber of generations of hairpins. The maximum multiple consid-
ered here, Hmax = 24 H = 2048 (limited by computer memory
resources) represents the half-height of the simulated channel
flow field and thus also corresponds to its friction Reynolds
number, Reτ .

The velocity fields of the hairpin packets were then uni-
formly, randomly selected from the geometric set of packet
sizes, and the packet velocity fields were superposed in a uni-
form, random process to construct an individual volumetric
flow snapshot of a channel flow. The channel domain extended
24 half-channel heights in the streamwise direction and 4 in the
spanwise direction, with uniform spatial resolution, ∆x+ ≈ 20,
in all directions. The number of packets applied per snapshot
was fixed to obtain a well-converged, logarithmic mean veloc-
ity profile, where the magnitude of the fiber circulation was
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Figure 2: The smallest hairpin packet, H ≈ 128, illustrating
the discrete vortex fibers used to calculate the packet-induced
velocity via Biot-Savart.

(a) u′/uτ
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Figure 3: Wall-parallel maps of the fluctuating streamwise ve-
locity, u′, at y+ ≈ 176 for (a) the attached eddy simulation and
y+ ≈ 281 (b) the channel DNS. y+ = 3.9

√
Reτ corresponds to

the middle of the log layer for both cases.

used as an arbitrary fitting parameter to obtain the desired von
Karman slope (1/κ), where all packets were assumed to ad-
vect at the free-stream velocity.

An example of the resulting instantaneous, wall-parallel
velocity field is shown in figure 3(a), with comparison to
the corresponding field obtained from a channel flow DNS at
Reτ = 5200 by Lee & Moser (2015), shown in figure 3(b). The
simulated field exhibits meandering, low- and high-speed ve-
locity regions characteristic of experimentally observed flows,
but clearly composed of much larger, more coherent scales,
similar to a low-pass filtering of the DNS field.

The streamwise energy spectra for the simulated velocity
field were calculated by averaging over N = 480 snapshots un-
til statistical convergence was obtained. A map of the premul-
tiplied energy spectra is shown in figure 4 for (a) the attached
eddy simulation and (b) the corresponding DNS. We note first
that the simulated velocity field is limited by the spatial res-
olution near the wall and thus begins at y+ = 20. However,
the attached eddy model is designed to primarily represent the
coherent structures inhabiting the log-layer, and thus this lim-
itation is not significant. Secondly, we observe that the DNS
spectral map shows the expected two regions of intense spec-
tral energy, associated with the small scale motions involved in
the near wall cycle at y+ ≈ 15, and LSMs inhabiting the outer-
peak, at the center of the log layer. The attached eddy simu-
lation captures only this second spectral signature of LSMs in
the center of the log layer.

Moreover, the spectral energy in the attached eddy simu-
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Figure 4: Pre-multiplied, streamwise energy spectra for (a)
the attached eddy simulation and (b) the channel DNS. The
wavenumber, k, is normalized by the channel half height.

lation has a peak around k ≈ 1 and is thus associated with a
region of wavenumbers lower than those corresponding to the
packet sizes themselves (k ≈ 3–43), indicating the streamwise
alignment of individual packets to generate large-scale, mean-
dering motions. The early implementations of the numerical
attached eddy simulation by Perry (1987) also found a sig-
nificant energy shift to lower wavenumbers, in comparison to
experiments, although they found a peak energy around k≈ 8.
The precise shape of the energy spectrum for the attached eddy
simulation is largely determined by the shape of the eddy itself,
as noted by Marusic & Perry (1995); in the present study we
examined only a parabolic, λ -shaped hairpin.

RESULTS
Bicoherence of the Attached Eddy Model

Having verified the spectral energetic structure of the at-
tached eddy model, the streamwise bispectrum was calculated
according to (1) and then normalized by the energy spectral
density associated with the different wavenumber triads to ob-
tain the bicoherence, b(k′,k′′). Because the attached eddy
model is composed of mostly LSMs, a significant amount of its
spectral energy resides at wavenumbers near the wavenumber
of the finite computational domain. This can result in signif-
icant spectral leakage, which becomes particularly prominent
in the bispectral calculation, and thus special care was taken
with the removal of the DC component of the velocity signals,
as described in the Appendix. The bicoherence map evaluated
at the middle of the log layer is shown in figure 5.

The bicoherence map for the attached eddy simulation
differs significantly from that of the channel flow DNS at the
same wall-normal location, shown above in figure 1(a). In
the channel flow, the bicoherence indicated a continuous band
of strong coupling between the LSMs and the full range of
other scales in the flow, which was interpreted in the con-
text of large-scale modulation of the small scales. For the at-
tached eddy simulation, the bicoherence indicates a discrete
set of strong triadic couplings between scales that differ in
wavenumber by an order of magnitude, such that k′′ ≈ 10k′.
The fact that the most prominent bicoherence is constrained
along this line indicates that large-scales interact most strongly
with scales that are substantially smaller, by an order of mag-
nitude, and not with scales at neighboring wavenumbers. Per-
haps this is partly explained by the relative lack of small-scale
structures in the attached eddy construction.

The bicoherence across the k′′ ≈ 10k′ slice is shown in
figure 6, along with circle-symbols for wavenumbers corre-
sponding to the streamwise extent (Lp) for the different dis-
crete packets. The three largest packets are associated with
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Figure 5: Bicoherence map in the middle of log layer (y+ =

3.9Re1/2
τ ≈ 176) for the attached eddy simulation at Reτ =

2048. The red ellipse marks the region of high bicoher-
ence associated with the wavenumber triad defined by k′ and
k′′ ≈ 10k′, denoted by the black dashed line.

prominent peaks in bicoherence, whereas the smaller packets
are not. There is also a sharp bicoherence peak at twice the
size of the largest packet. The question about the interpretation
of this high bicoherence region thus remains: why the largest
packets don’t seem to interact with the next largest packets in
the packet hierarchy, i.e. why packets separated by a single
generation don’t show significant bicoherence and exhibit a
high bicoherence along k′′ ≈ 2k′?

The precise peak locations in the bispectrum likely re-
flect the spatial location of the packets in the flow; modifying
the placement of the packets from the entirely random pro-
cess used here to a constrained random process that controls
the minimum distance between similar packets, as discussed
in de Silva et al. (2016), is expected to alter the observed peak
structure of the bicoherence. Thus, the lack of observed in-
teractions between neighboring packets may be attributed to
their relative spatial orientation in the flow and perhaps due to
a lack of overlap, although this question remains unresolved.
The convection velocity of the individual packets is also ex-
pected to influence the interaction behavior captured by the
bicoherence.

Finally, it is worth noting that the bicoherence is con-
structed to represent the triadic coupling between scales,
which results from a non-linear interaction. In the attached
eddy model, however, the non-linear interaction is simulated
via a purely linear superposition of scales, and nevertheless the
bicoherence detects the scale-interactions as if they were due
to non-linear coupling. This provides direct evidence that the
linear superposition process used in attached-eddy type mod-
els can be shown to emulate even the non-linear coupling as-
sociated with the turbulent convection.

Biphase of the Attached Eddy Model
The biphase can be interpreted as a measure of the interac-

tion delay between two velocity modes interacting to transfer

Figure 6: The bicoherence slice along k′′ = 10k′ in the middle
of the log layer taken from figure 5 is shown in the black line.
The sharp peaks appear at wavenumbers in multiples of 2. The
wavenumbers corresponding to the streamwise extent (Lp) of
the individual hairpin packets, k′ = {2.7,5.4,10.7,21.4,42.9},
are marked with red circles. The lowest-wavenumber, sharp
peak in the bicoherence corresponds to k′= 1.4, which is twice
the size of the largest hairpin packet. The broader peak in bi-
coherence at the lowest wavenumbers is the result of spectral
leakage as discussed in the Appendix.

energy to a third. Indeed, we showed previously that the aver-
aged biphase is directly related to the direction of the turbulent
energy cascade. In the case of the DNS channel flow, shown
above in 1(b), the biphase was shown to vary with wavenum-
ber, where nearly all triads exhibited positive interaction de-
lays (β > 0, i.e. all shades of red in the bipshase map), con-
sistent with the classical energy cascade. However, as noted
in the introduction, the precise interpretation of the interaction
delays was unclear: were they associated with the geometry
and spatial distance between the interacting modes or a tem-
poral delay in the interaction dynamics? The attached eddy
model removes the non-linear dynamics because the velocity
field is constructed entirely by means of linear superposition of
hairpin packets. Therefore, for the attached eddy biphase cal-
culation, the delay interpretation is more naturally associated
with spatial distance between scales and the physical geome-
try of the interacting modes. The biphase map evaluated at the
middle of the log layer is shown in figure 7.

Unlike the DNS biphase which was almost uniformly pos-
itive, the attached eddy biphase exhibits both positive and neg-
ative delays, depending on the wavenumber triad. Following
along the k′′ = 10k′ slice of significant bicoherence, we see
that the biphase is positive, as in the DNS. But, if instead, we
followed along the k′ = 1 line of the LSM interactions, then
there is a transition between positive and negative biphase.
Large-scale interactions with neighboring large scales show a
positive delay, but large-scale interactions with small-scales
show a negative delay. This suggests that if the high bicoher-
ence region could be shifted or extended by means of modi-
fication of the superposition algorithm, then the biphase may
also follow suite, and thus the interaction delay can be tuned
by the spatial orientation and placement of the packets.

4



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan, July 19–22, 2022

β

Figure 7: The streamwise biphase map in the middle of log
layer (y+ = 176). The black dashed line is the same line as in
figure 5.

CONCLUSIONS
Bispectral calculations were performed for a modest

Reynolds number attached eddy simulation, with five gener-
ations of hairpin packets, and contrasted with a DNS channel
flow. The bicoherence showed evidence for non-linear cou-
pling between large- and small-scale motions, even though
the simulation itself involved only linear superposition of hair-
pin packets, thus providing evidence that the spectral features
of non-linear dynamics can be modeled using linear models
alone. However, the nature of the scale-interactions for the at-
tached eddy model was much narrower in wavenumber-space
than that of the DNS, and indicated that only a limited set of
wavenumber triads participated. The sliced bicoherence was
used to identify the specific hairpin packets participating in
these interactions. The biphase, which has been shown to
represent an interaction delay between different wavenumber
modes, and also the direction of average energy transfer due
to the interactions, was shown to exhibit the same sign for the
attached eddy model as for the DNS, at least in the region of
high bicoherence. Overall, these results suggest that modi-
fication of the linear superposition mechanism in the attached
eddy model is the key to altering the bispectral signature of the
scale-interactions, and thus the key to allowing the attached
eddy model to more realistically capture true, non-linear dy-
namics in wall-bounded flows.

APPENDIX
The typical procedure for removing the DC component of

a random signal, z(t), as described by Bendat & Piersol (1986),
prescribes subtracting the mean, 〈z(t)〉 from the instantaneous
signal, and then tapering the resulting data with an appropri-
ate window, after which the discrete Fourier transform (DFT)
is calculated, with zero-padding. However, this procedure can
introduce significant artifacts to the resulting energy spectrum
(or bispectrum) when the original signal is dominated by very
low frequency (wavenumber) components, in which case most
of the signal may be offset from zero even if, arithmetically, it

(a) (b)

(c) (d)

Figure 8: Premultiplied streamwise energy spectra (a,c) and
bicoherence calculations (b,d) for the DNS (top) and attached
eddy (bottom) where the red line indicates unweighted DC
component removal and the blue line indicates the window-
weighted DC component removal. Note the significant reduc-
tion in DC leakage for the attached eddy bicoherence (d) when
using the window-weighted mean, in contrast to the minimal
effect in all other calculations. The bicoherence in (b) and (d)
is measured along k′ = 2; all spectral measurements are at the
middle of the log layer.

has zero mean. When this happens, the windowing process can
actually introduce spurious energy at low frequencies. In order
to avoid this spectral leakage from the DC and near-DC com-
ponents, Van der Schaaf & Van Hateren (1996) suggest that
a ‘window-weighted’ average be removed from the instanta-
neous signal instead of the traditional, unweighted averaged.
The window-weighted average, 〈z(t)〉w for a given window
function, w(t), is defined as

〈z(t)〉w = 〈z(t)w(t)〉/〈w(t)〉 (2)

Once this average is removed, then the resulting signal can be
tapered and the DFT can be calculated following the standard
procedure.

The difference between the standard DC removal and
the weighted DC removal is shown in figure 8 for both
the DNS data, with predominantly higher wavenumber com-
ponents, and the attached eddy data, with predominantly
lower wavenumber components. The greatest leakage with-
out weighting is observed in the bicoherence for the attached
eddy, and that is the case in which the weighting produces the
most significant improvement. The choice of DC removal has
little impact on the other calculations.
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