
12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)

Osaka, Japan (Online), July 19-22, 2022

DIRECT NUMERICAL SIMULATIONS OF OSCILLATORY BOUNDARY
LAYERS OVER ROUGH WALLS

Umberto Ciri
Dept. of Mechanical Engineering

University of Puerto Rico at Mayagüez
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rodriguez.abudo@upr.edu

Stefano Leonardi
Dept. of Mechanical Engineering

The University of Texas at Dallas

800 W Campbell Rd, Richardson, TX 75252 US

stefano.leonardi@utdallas.edu

ABSTRACT
Turbulent oscillatory flow over a rough bed is investigated

with direct numerical simulations. Flow motion is induced by

harmonic oscillation of the bed and the fluid is otherwise at

rest, similarly to the classical Stokes boundary layer problem

for the laminar flow over an oscillating flat plate. In the present

case, the bed is rough and consists of two layers of fixed, iden-

tical spherical particles. In the turbulent flow, the oscillatory

motion is propagated more rapidly from the bed to the bulk of

the flow. At each distance from the bed, the time delay is re-

duced compared to the laminar linear trend and follows a curve

which seems to depend primarily on the Reynolds number,

rather than the particular bed configuration (rough or smooth).

During the decelerating phase of the cycle, a log layer is ob-

served in the velocity profiles, which is later suppressed in the

acceleration phase. The Reynolds stresses resemble the canon-

ical uni-directional boundary layer distribution in the decelera-

tion phase and change sign as the flow reverses. Nevertheless,

the production of turbulence kinetic energy does not achieve

large negative values and remains positive. The phase of max-

imum turbulent kinetic energy production is anticipated com-

pared to smooth beds, and depends on the rough bed morphol-

ogy.

INTRODUCTION
Turbulent oscillatory boundary layers are a common hy-

drodynamic feature at the seabed of littoral zones. The os-

cillatory motion is generated by sea surface waves through

gravity, and it affects the whole bed dynamics and morphol-

ogy, from sediment erosion to transport and deposition pat-

terns. Thus, the understanding of the oscillatory dynamics of

a wall-bounded flow has both intellectual and practical conse-

quences.

In the laminar regime, the oscillatory motion close to a

solid wall is fairly well-known and can be described by the

Stokes boundary layer. The Stokes boundary layer is a shear-

driven flow generated by the harmonic oscillations of a flat

plate respect to a fluid at rest in the far field. According to the

classical solution (Batchelor, 1967), the governing parameters

of the problem are the amplitude of the plate velocity oscilla-

tions U0, and the characteristic length δ =
√

2ν/ω , where ν
is the fluid viscosity, and ω the frequency of the oscillations.

The length δ is a measure of the distance from the plate up

to which the effect of the oscillation is felt in the fluid do-

main (thus, from a reference frame on the oscillating plate, it

represents the thickness of the boundary layer). Additionally,

the laminar solution shows that the wall shear stress (also har-

monic) has a phase lead of π/4 over the velocity oscillations.

More recently, various authors have investigated the os-

cillatory boundary layer over smooth walls, either numeri-

cally (Spalart and Baldwin, 1989; Akhavan et al., 1991b; Salon

et al., 2007) or experimentally (Hino et al., 1983; Jensen et al.,

1989; Akhavan et al., 1991a; Sarpkaya, 1993; Eckmann and

Grotberg, 1991), for a wide range of flow conditions. Although

in the experimental apparatus or numerical frameworks the os-

cillations are mostly imposed through an harmonic pressure

gradient, the flow regime appears to still scale with the param-

eters identified by the shear-driven classic analysis, δ and U0,

and, in particular, with the Reynolds number Reδ = U0δ/ν .

Up to Reδ ≃ 100, the oscillatory boundary layer is laminar

and follows the Stokes solution. As the Reynolds number is

progressively increased, perturbations in the flow field appear

and grow for some phases of the oscillation cycle. The bound-

ary layer develops into two intermediate flow regimes (the

‘disturbed laminar’ and the ‘intermittently turbulent’ regime;

Sarpkaya, 1993; Blondeaux & Vittori, 1994), before a fully de-

veloped turbulent regime is established. In the fully developed

regime, Reδ & 750− 1000 (Hino et al., 1983; Jensen et al.,

1989), turbulent fluctuations are present essentially through-

out the whole period. The intensity of the fluctuations is larger

during the deceleration interval (where perturbations starts to

appear before extending to earlier and earlier phases while Reδ

is increased). The phase lead between the peak shear stress (no

longer harmonic) and the maximum velocity is reduced com-

pared to the laminar solution.

While the smooth wall provides a useful theoretical ab-

straction, in practice the Stokes layer will be bounded by a

rough wall, in particular in coastal environments. Various stud-

ies have emphasized the importance for transition to turbu-
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lence of even very small imperfections in otherwise “mirror-

shine” smooth walls (Blondeaux & Vittori, 1994; Vittori and

Verzicco, 1998; Costamagna et al., 2003; Verzicco and Vittori,

1996; Tuzi and Blondeaux, 2008). Other works have focused

on large scale modulations of the bedform, ripples, which are

often observed in various patterns as a result of sediment trans-

port and deposition process by the oscillatory boundary layer

(Grigoriadis et al., 2012; Penko et al., 2013; Rodrı́guez-Abudo

and Foster, 2014; Scandura et al., 2000; Chang and Scotti,

2004; Önder and Yuan, 2019). On the other hand, Sleath

(1987) and Jensen et al. (1989) have considered rough flat

beds packed with sand, gravel or pebbles of various size, anal-

ogous to the classic configurations extensively analyzed in the

context of steady boundary layers (Nikuradse, 1933). Sleath

(1987) emphasized the role of vorticity ‘bursts’ or ‘jets’ as-

sociated with the wakes of the individual roughness elements,

which separate and propagate from the wall to the outer layer

when the flow reverses direction. The experiments of Jensen

et al. (1989) at larger Reδ suggested a similar scenario to

steady rough-wall boundary layers, with the flow approach-

ing a ‘fully-rough’ regime, where the main scaling parameter

is the roughness size. In general, a complete understanding of

rough-wall oscillating boundary layers is still lacking. In this

work, we discuss results from direct numerical simulations of

shear-driven oscillatory flow over a bed of spherical particles.

NUMERICAL METHODOLOGY
The non-dimensional continuity and Navier-Stokes equa-

tions are taken as the governing equations:

∂Ui

∂xi
= 0;

∂Ui

∂ t
+

∂UiU j

∂x j
=−

∂P

∂xi
+

1

Reδ

∂Ui

∂x2
j

(1)

where Ui is the velocity component in direction xi and P is

the pressure. The numerical method for solving the governing

equations is described in Orlandi (2000). The substrate parti-

cles are treated with the immersed boundary method presented

in detail in Orlandi and Leonardi (2006). Simulations are per-

formed for an open channel with a bed of spherical particles

on the lower wall (figure 1). The spheres are identical and reg-

ularly distributed into two superposed layers, with the bottom

layer staggered by a radius. The lower boundary of the com-

putational domain is tangent to the spheres of the upper layer,

so that only the upper cap of the bottom spheres is inside the

computational domain (see the inset in figure 1a).

This rough wall reproduces one of the configurations ana-

lyzed in Chan-Braun et al. (2011) and Mazzuoli and Uhlmann

(2017) for a uni-directional pressure forcing at a Reynolds

number based on the bulk velocity equal to U0H/ν = 2870,

where H is the height of the computational domain. This

would correspond to a smooth-wall channel at Reτ = uτ H/ν =
180, where uτ is the friction velocity. In the present work, we

have considered two values for the sphere diameter D, such

that H ≈ 5.5D and H ≈ 10D. The larger-particle case (H =
5.5D) reproduces the geometry in Chan-Braun et al. (2011),

while the second case, for the small spheres (H ≈ 10D), is ob-

tained by halving the diameter of the spheres.

In the directions parallel to the bed, the computational do-

main is 6H (streamwise) and 3H (spanwise). For the case

H = 5.5D, the mesh consists of 768× 384× 256 uniformly

distributed points in the streamwise, spanwise and bed-normal

direction respectively. For the case H = 10D, the points

have been doubled in the streamwise and spanwise direction

(1536× 768× 256) to have sufficient resolution to model the

particles. The resolution is consistent with the study of Chan-

Braun et al. (2011).

As boundary conditions, periodicity is applied in the

streamwise and spanwise directions. Free-slip is applied at

the top of the domain. We consider the flow motion un-

der an oscillatory shear-driven forcing, applied as a bound-

ary condition with the immersed boundary method on the bed

of spherical particles. The layers of sphere oscillate follow-

ing the harmonic function in figure 1b, U0 sin(ωt). Four

cases have been run, corresponding to a Reynolds number

Reδ =U0δ/ν = 100, 190, 765 and 1200, where δ is the depth

of the Stokes layer (δ =
√

2ν/ω). These last values are above

(or at least approaching) the smooth-wall critical value for the

fully-developed regime (Hino et al., 1983; Jensen et al., 1989).

RESULTS
Figure 2a summarizes the various cases analyzed in a

‘Moody-diagram’-like chart, with the friction coefficient as a

function of Reδ . The bed drag varies in time throughout the

cycle, and the friction coefficient C f is defined with the max-

imum drag as C f = 2τmax/ρU2
0 , where τmax is the maximum

bed friction over the oscillation period and ρ the fluid den-

sity. The simulation results are compared with the analytical

results for smooth-wall oscillatory flows in the laminar (Batch-

elor, 1967) and turbulent (Fredsøe, 1984) regimes.

It is apparent from figure 2a that the flow regime over

the spherical bed with H/D = 5.5 scales with Reδ similarly

to the smooth wall case. At low Reynolds numbers, when

the regime is laminar, the friction coefficient has an inverse

dependence on Reδ . The highest value of Reynolds number

tested herein (Reδ = 1200) is approaching the fully turbulent

regime. Simulations for the bed with small spherical particles

(H/D = 10) have been performed for the two highest values

only of Reδ = 765,1200 to limit the computational cost. The

trend in the transitional and turbulent regime is consistent with

the case H/D = 5.5.

The bed friction as a function of time is shown in fig-

ure 2b, for the four Reynolds number cases. For the tests at

low Reδ , the shear waveform τ/τmax resembles the laminar

smooth wall case, cos(ωt −π/4), but the maximum value is

larger (fig. 2a) because the bed is rough. As the Reynolds num-

ber is increased, transition to the turbulent regime occurs and

the friction coefficient increases compared to the laminar case.

The shear stress further departs from the laminar behavior, as

the waveform is no longer harmonic and the phase shift in the

zero-crossing increases.

Turbulence over the rough bed induces further modifica-

tions in the temporal evolution of the flow, compared to the

laminar case. Figure 3 shows the phase shift in the flow veloc-

ity with respect to the oscillatory forcing (U sinωt), as a func-

tion of the distance from the bed. According to the Stokes’

solution, the phase shift increases linearly (in magnitude) with

the distance from the bed as the velocity is proportional to

sin(ωt − z/δ ). For the present simulations, the phase shift has

been determined by first computing the time correlation be-

tween the sinusoidal forcing and the velocity signal at different

distances from the bed. Then, the time shift τ corresponding to

the maximum correlation has been taken to calculate the phase

delay as ϕ = ωτ .

Figure 3 presents results for both the rough-bed config-

urations and a corresponding smooth wall simulation at the

same Reδ . Compared to the classical solution, the phase delay

is reduced when the flow becomes turbulent. The decrease is
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Figure 1. (a) Computational domain. (b) Oscillatory forcing and phase identifiers.
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Figure 2. a) Friction coefficient C f as a function of the Reynolds number. Symbols, present simulations: ◦ spherical-particle bed,

H/D = 5.5; • H/D = 10; � smooth bed validation (Stokes boundary layer). Lines, theoretical trends for the laminar (Batchelor,

1967) and turbulent (Fredsøe, 1984) regimes (smooth bed). b) Wall friction variation over half-cycle for different Reδ and H/D = 5.5

(lines are shifted vertically for the sake of clarity). Solid lines: present simulations for rough bed. Dashed line: Stokes solution,

τ/τmax = cos(ωt −π/4).
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Figure 3. Velocity phase delay as a function of the distance from the bed for Reδ = 765 (a) and Reδ = 1200 (b). Symbols indicate

present simulation over a rough bed: ◦ H/D = 5.5; • H/D = 10. The solid line indicates present results for oscillating flow over a

smooth bed. The dashed line shows the (laminar) theoretical trend from the Stokes’ solution. The origin for z in the cases with the

spherical-particle bed is taken at 0.2D below the crest plane.

significant already within a few Stokes depths δ from the wall

(z/δ . 5). This effect can be expected on the basis of a classic

eddy-viscosity argument, with the macroscopic turbulent mix-

ing enhancing the diffusion by molecular viscosity and propa-

gating more rapidly the driving force from the wall to the bulk

of the fluid. Consistently, the phase-shift reduction increases

with the Reynolds number (as the flow approaches the fully

turbulent regime) and it is observed at a shorter distance from

the bed (figure 3a at Reδ = 765 vs. figure 3b at Reδ = 1200).

It seems that this effect is controlled by the turbulent struc-

tures in the bulk of the flow, with little dependence on the

shape or morphology of the bed. Both the cases with spher-

ical particles (H/D = 5.5 and H/D = 10) and the smooth wall

approximately collapse on a single curve with a slope which
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depends on the Reynolds number. Possibly, at large values of

Reδ , in the fully-developed regime, a universal curve for the

time delay may exist, where results collapse regardless of the

bed morphology and Reynolds number.

Close to the bed, within approximately z/δ . 1, the

phase delay curve has the same slope as the laminar case (i.e.

ϕ/2π ≈−z/δ ) regardless of the bed details and the Reynolds

number. This region is the analogous of the viscous sub-layer

in canonical uni-directional boundary layers. The flow remains

laminar and the results collapse with the classical Stokes’ the-

ory.

Literature studies of smooth-wall oscillatory boundary

layers report that intense turbulent activity is found in the de-

celeration phases, while fluctuations are damped in the ac-

celeration phases (Jensen et al., 1989; Salon et al., 2007).

Velocity profiles in wall units (U
+
= U/uτ ) seem to con-

firm this scenario (figure 4). The friction velocity to scale

the profiles corresponds the maximum friction over the cycle:

uτ =
√

τmax/ρ . The overline indicates an ensemble average

in phase and in the streamwise and spanwise directions. The

velocity profiles in figure 4 are evaluated in a reference frame

moving with the oscillatory bed for the cases at Reδ = 1200 for

half a cycle (the other half is symmetric in the present case).

A logarithmic layer develops during the deceleration (purple

lines), while it is not observed in the early phase of the cy-

cle (acceleration, green lines). The logarithmic layer is ob-

served also at Reδ = 765 (not shown here) in the decelerating

phases. As expected, it occupies a thinner region of boundary

layer, but this does suggest that turbulence starts developing

already at Reδ = 765. The size of the spheres does not affect

too much the time evolution of the profiles, as corresponding

phases show similar features in terms of appearance of the log-

arithmic layer. The sphere diameter does change the down-

ward shift of the profiles compared to the canonical law of the

wall. The downward shift (i.e., the roughness function, ∆U)

is related to the wall drag, and, consistently with figure 2a, it

decreases for the case H/D = 10 (small spheres, and smaller

drag).

Turbulence generation near the wall in the early decel-

eration phases results in large values of the Reynolds shear

stress uw. Figure 5 shows Reynolds stress profiles for the large

sphere case (H/D = 5.5, panel a) and the small sphere case

(H/D = 10, b). During the deceleration, the profiles resemble

the typical uni-directional boundary layer case, with a (nega-

tive) near wall peak and an approximately linear decay in the

outer layer, which depends on the total shear. The value of the

near wall peak is approximately the same for both values of the

particle diameter D and is approached at about the same phase

of the cycle. Coherent structures generated during the decel-

eration phase propagate from the wall to the outer layer in the

next phases of the cycle. Even if turbulence is damped in the

acceleration phase, the Reynolds stress remains relatively large

and changes sign as the flow reverses, which may potentially

lead to negative turbulent kinetic energy (TKE) production.

The turbulent kinetic energy production (P =−uwdU/dz) is

plotted in figure 6 for both values of D. The TKE production

for a canonical unidirectional flow is also shown as reference.

The peak value of TKE production appears reduced compared

to the uni-directional flow because results in figure 6 are nor-

malized with the maximum friction velocity (P+ = Pν/u4
τ ,

with uτ =
√

τmax/ρ) which does not occur at the same phase

as the maximum in the production. The maximum in friction

(i.e., maximum in shear) occurs earlier in the cycle, towards

the end of the acceleration phase (see figure 2b). Instead, tur-

bulence production is large and peaks during the deceleration

phases, when, consistently, a logarithmic layer is also estab-

lished in the velocity profile. For the case with the large par-

ticles (H/D = 5.5), the peak in the production appears shifted

at larger distance from the wall. However, this may be due to

some uncertainty in the determination of the virtual origin for

z, which herein is taken at 0.2D below the crest of the sphere

following Chan-Braun et al. (2011). Negative values of pro-

duction P are observed when the velocity changes sign, al-

though the magnitude is very small. The production depends

on both the Reynolds stress uw and the shear dU/dz. As the

forcing changes sign, the Reynolds stresses are large (and with

opposite sign) in the outer layer where the velocity gradient is

small. This is also the case for oscillatory flows over smooth

beds (Salon et al., 2007). However, it is not straightforward to

generalize this situation for other flow regimes or rough beds,

since the sign of the production will ultimately depend on the

interplay between the oscillatory forcing and time-scales asso-

ciated with the rough bed. For example, ejections of coherent

structures or shedding from the bed crests as the flow reverses

direction may affect and change the sign of TKE production.

Figure 7 shows the evolution in time, throughout half the

cycle, of the peak of TKE production Pmax. The peak is

normalized both with the maximum friction velocity (panel

a; normalization as in figure 6) and with the instantaneous

friction velocity (panel b), which depends on the local shear,

ũτ =
√

τ (t)/ρ . Figure 7a shows that the maximum value of

Pmax across the cycle is not attained at the same phase for

the rough beds and the smooth wall. Instead, a large phase

lead compared to the smooth wall reference is observed for

the bed made of large spherical particles (D/H = 5.5). The

phase lead is still present although somewhat mitigated for the

case (D/H = 10). The phase shift in P (which can also be

noted in figure 6) should be attributed to time evolution of the

shear, rather than the Reynolds shear stresses uw. From fig-

ure 5, it appears that uw are relatively well synchronized for

both values D. The shear dU/dz seems to be more sensitive to

particular configuration of the bed and causes the phase shift.

In figure 7b, the peak of TKE production is shown with

the normalization by the instantaneous friction velocity. Since

the shear vanishes during the cycle (figure 2b), the curve is

singular. The zero-crossing of the wall shear stress is antici-

pated compared to the laminar case (which has a phase lead of

π/4, corresponding to a zero crossing at t = 3/8T = 0.375T ).

Figure 7b confirms the increase in the phase lead for the rough

bed cases, as the curve blows-up shortly after t/T = 0.3. This

behavior is opposite to that of the turbulent oscillatory flow

over a smooth wall, where the phase lead is reduced compared

to the laminar solution, as it can be observed from the dashed

line in figure 7 and literature results (Jensen et al., 1989).

CONCLUSIONS
Numerical simulations of turbulent oscillatory flow over a

bed made of spherical particles have been performed. We have

considered a shear-driven flow, where the bed moves accord-

ing to an harmonic function and the fluid is otherwise at rest.

The bed consists of two superposed layers of fixed, identical

spherical particles. We have considered two different values of

the particle diameter to investigate the dependence of the flow

on the sphere size. Simulations have been performed for a

range of Reynolds number, spanning from the laminar regime

and approaching fully-developed turbulence.

Results show that the temporal evolution of the flow over

the rough bed is modified compared to classical Stokes’ so-

lution for laminar boundary layers. In particular, the phase
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Figure 4. Mean velocity profile in wall units at different phases and law of the wall (solid line): (1/κ) logy++B, with κ = 0.41 and

B = 5.5; (a) H/D = 5.5 large sphere case; (b) H/D = 10 small sphere case. Following Chan-Braun et al. (2011), the virtual origin of

the profile is taken 0.2D below the crest of the spheres.
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Figure 5. Reynolds shear stress uw profile at different phases of the oscillation: (a) H/D = 5.5 large sphere case; (b) H/D = 10 small

sphere case. The horizontal dashed line indicates the crest plane. Colors indicate the phase as in figure 1b.
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Figure 6. Turbulent kinetic energy production P: (a) H/D= 5.5, large sphere case; (b) H/D= 10, small sphere case. The solid black

line shows the production for a uni-directional turbulent boundary layer. Colors indicate the phase as in figure 1b for the oscillatory

flow cases.

shift in the velocity at various distances from the bed is re-

duced compared to the laminar case, which predicts a linear

increase (in magnitude) with the distance from the bed. The

phase shift reduction seems predominantly dependent on the

Reynolds number rather than the bed morphology, which sug-

gests that a unique curve may exists for large enough values

of the Reynolds number Reδ . The bed drag also has a dif-

ferent phase shift compared to the laminar solution. In this

case, as the flow becomes turbulent, the drag wave form is no

longer harmonic and the zero-crossing occurs earlier in the cy-

cle for the rough beds. An opposite behavior, with a delay in

the zero crossing, is observed for turbulent oscillatory flows

over smooth beds.

Strong turbulence activity is observed during the deceler-

ation phases of the cycle, with the presence of a logarithmic

layer in the velocity profile. During the acceleration, the log-

arithmic region is suppressed and the value of the Reynolds

shear stress also decreases. However, the Reynolds stress re-
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Figure 7. Evolution in time of the maximum of turbulent kinetic energy production Pmax normalized in wall units with the maximum

friction velocity (a) and the instantaneous friction velocity (b): ◦ spherical-particle bed, H/D = 5.5; • H/D = 10; smooth wall.

The horizontal line indicates the value for a unidirectional boundary layer over a smooth wall.

mains different than zero throughout the cycle and changes

sign (compared to the canonical case in wall-bounded turbu-

lence) as the flow reverses direction. Nevertheless, the turbu-

lent kinetic energy production appears to remain positive (or

just slightly negative) because the velocity gradient is very

small during these phases. While this happens similarly for

both rough bed configurations, the time evolution of the tur-

bulent kinetic energy is not the same in the two cases. This is

because production depends on both the time-scales of the os-

cillatory forcing and the overlying turbulent flow. Therefore, it

may be possible to observe enhanced regions of negative TKE

production for different bed configurations or flow regimes.
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