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ABSTRACT
Direct numerical simulation of a turbulent spot develop-

ing in a laminar plane Couette flow was performed to study the
dissimilarity between the heat and momentum transfers. The
seed of the turbulent spot was a vortex pair, and the initial flow
had an absolute similarity state between heat and momentum
transfers. The turbulent spot grows gradually in the early stage
and rapidly in the latter stage. The effective heat transfer state,
which achieves larger heat transfer than momentum transport,
was confirmed in the rapidly developing process. The dissim-
ilarity mechanism was investigated by using a FIK identity
equation. We clarified that the turbulent contributions in the
friction coefficient and the Stanton number provided the effec-
tive heat transfer state. The budgets of Reynolds shear stress
and heat flux exhibited that the dissimilarity was attributed to
the differences in the pressure-strain and dissipation terms, and
the difference in the production terms leads to adverse effects
on the effective heat transfer. After the developing process,
the pressure-strain term causes a decrease of the heat transfer
compared to the skin friction.

INTRODUCTION
In turbulent flows, vortical structures enhance heat and

mass transfers compared to those in the laminar flow. While
this fact often leads a practical advantage for many engineer-
ing applications, the promoted momentum transport should
result in the disadvantage of increased frictional drag. It is
still challenging for us to achieve an effective heat transfer
that outweighs a momentum transfer or to intentionally con-
trol a dissimilarity between the transfers, because of a similar-
ity between the heat and momentum transfers, as known as the
Chilton–Colburn analogy.

Some effective heat-transfer states were demonstrated by
providing a certain vortex structure or applying a flow-control
technique. Katoh et al. (2013) revealed that the spanwise vor-
tices with cyclonic rotation generate a dissimilarity in the plane
Poiseuille flow. The dissimilarity due to anti-cyclonic rota-
tion was also recently clarified (Kubo et al., 2021). Yamamoto

et al. (2013) performed DNS (direct numerical simulation) of
a channel flow with wall suction and blowing based on an
optimal control theory. Their streamwise-traveling wave of
blowing and suction broke the analogy in heat and momen-
tum transfers, obtaining an effective heat transfer. Motoki
et al. (2018) determined the optimal heat transfer state by us-
ing the Euler–Lagrange equations. More recently, the effective
heat transfers were reported for a Taylor–Couette flow with the
traveling-wave control (Mamori et al., 2021), and for a turbu-
lent flow on a permeable wall (Motoki et al., 2021).

Recently, there have been reports of effective heat trans-
fer in spontaneously intermittent turbulent fields without any
flow control. Fukudome et al. (2018) found an effective heat
transfer in the plane Couette flow at a subcritical Reynolds
number, where the flow field was accompanied by a turbulent
stripe. The turbulent stripe is a large-scale spatial intermit-
tent pattern of coexisting laminar and turbulent regions (Pri-
gent et al., 2002; Barkley & Tuckerman, 2007; Duguet et al.,
2010; Tsukahara et al., 2014; Fukudome & Iida, 2012). The
same effective heat transfer is confirmed with helical turbu-
lence in annular Poiseuille flows (Fukuda & Tsukahara, 2020).
More recently, we revealed that the effective heat transfer state
is also obtained by a growing turbulent spot in the plane Cou-
ette flow (Fukudome et al., 2021). However, the generation
mechanism of the dissimilarity has not been understood.

In this paper, we have performed DNS of a develop-
ing turbulent spot in the laminar plane Couette flow and its
passive-scalar thermal field, in order to discuss the dissimilar-
ity between the momentum and heat transfers in the spatially-
intermittent turbulent regime. As a seed of the spot, we added a
pair of longitudinal vortices (Lundbladh & Johansson, 1991),
and the similarity between streamwise velocity and temper-
ature fields was secured at the beginning of the simulation.
Then, the dissimilarity mechanism was analyzed by the iden-
tity equations for the skin-friction and the heat-transfer co-
efficients, i.e., the FIK identities (Fukagata et al., 2002; Ya-
mamoto et al., 2013). Furthermore, the budgets of Reynolds
shear stress and turbulent heat flux are compared to identify
the generation mechanism of the dissimilarity.
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Figure 1. Schematic of target plane Couette flow.
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Figure 2. Cross-sectional view of initial disturbance. Red and
blue iso-surfaces show vortices identified by the second invari-
ant of the deformation tensor II+ = 0.1 with clockwise and anti-
clockwise rotation, respectively. The in-plane velocity vector is
colored by its magnitude.

Figure 3. Temporal development of the turbulent spot. Red and blue iso-surfaces represent vortical structures identified by the second
invariant of the deformation tensor II+ = 0.05 with clockwise and anti-clockwise rotation in streamwise direction, respectively.

NUMERICAL SIMULATION
The flow configuration including the thermal boundary

condition is illustrated in Fig. 1, where the periodic boundary
conditions are imposed in the streamwise (x) and spanwise (z)
directions. The computational domain is 20πδ × 2δ × 10πδ

and the number of grid points is 256×65×256, in x, y, and z.
The top and bottom walls move at speeds of +UW and −UW ,
respectively, and their temperatures are +TW and−TW , respec-
tively.

The governing equations are the incompressible continu-
ity, Navier–Stokes, and energy equations. The temperature
is treated as a passive scalar. For spatial discretization, the
spectral method (Kim et al., 1987; Fukudome et al., 2018)
is adopted with Fourier series in x and z, and the Chebyshev
polynomial expansion in the wall-normal (y) direction. The
collocation grid is employed to compute the nonlinear terms in
physical space and the grid has 1.5 times finer resolution to re-
move aliasing errors. As the time integration, the second-order
Adams–Bashforth and Crank–Nicolson schemes are adopted
for the nonlinear and viscous terms, respectively. Here, the ex-
plicit Euler scheme is adopted for the first step of the nonlinear
terms to compute from the initial flow field.

The Reynolds and Prandtl numbers are Re = 450 and
unity, respectively, where Re is based on UW and δ . The time
step size is ∆t = 0.01δ/UW . Hereafter, the parameters are nor-
malized by UW , δ , and/or TW .

As the initial flow field, we mimic a transient jet from
the wall as a single disturbance, introduced by Lundbladh

& Johansson (1991). The streamwise velocity and temper-
ature distributions are identical with the laminar value, i.e.,
u/Uw = y/δ and θ/Tw = y/δ , indicating that the initial flow
field satisfies the complete similar state between heat and mo-
mentum transfers. The stream function Ψ of an initial distur-
bance is denoted as

Ψ = A
(

1− y2
)2

ze(−x2−y2), (1)

where the wall-normal and spanwise velocities can be derived
by v = ∂Ψ/∂ z and w =−∂Ψ/∂y. Here, the parameter A rep-
resents the strength of initial disturbance or the peak value of
the local wall-normal velocity at the mid of the vortex pair.
Figure 2 shows a cross-sectional flow field of the initial distur-
bance for A = 1.2. A pair of counter vortices can be confirmed
in the channel center, and the maximum wall-normal velocity
at the midpoint of the vortices corresponds to A = 1.2.

RESULTS AND DISCUSSION
Figure 3 shows the temporal evolution of the disturbance

for A = 1.2. At t = 100 (Fig. 3(c)), very-extended longitudinal
vortical structures composes a spot structure, in which turbu-
lent motions are rather weak yet. Small-scale vortices can be
confirmed at t = 150 (Fig. 3(d)), then the turbulent spot rapidly
grows and it reaches the edge of the computational domain at
t = 300 (Fig. 3(g)). As reported in the following, our main
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Figure 4. Temporal evolution of St, C f , and Γt .

0 100 200 300 400 500 600
0

0.1

0.2

0.3

t

u
' i

 r
m

s,
 θ

' r
m

s

 u'rms

 v'rms

 w'rms

 θ'rms

Figure 5. Temporal evolution of RMS values of velocity and
temperature fluctuations.

focus is on this spatial-growth period (t = 150–300) of the tur-
bulent spot, where an effective heat transfer has been detected.

Figure 4 shows time series of the friction coefficient C f
(= u2

τ/U2
W ), the Stanton number St (= h/CpρUW ), and the in-

termittent factor Γt , where uτ , h, Cp, and ρ are the friction
velocity, the heat-transfer coefficient, the specific heat, and the
density, respectively. The definition of Γt is the ratio of the tur-
bulent area against the entire channel area, where the turbulent
area is identified based on the dissipation rate. The point at
which the local dissipation rate averaged in y exceeds half of
the average dissipation rate for the entire channel in the instan-
taneous flow field was determined to be a turbulent region. As
shown in Fig. 4, all values gradually increase for 0 < t < 150
and they rapidly grow for t > 150, where the turbulent spot
grows spatially and with generating fine-scale eddies inside it.
The growth rate of each coefficient during this rapid develop-
ment process is the largest and constant value. Eventually, they
converge at t ' 350 because the spot size reaches the finite
computational domain. Therefore, the turbulent spot grows
through the two stages before reaching the domain size: the
gradual expansion at the early stage and the rapid expansion
at the latter stage. This two-stage growth corresponds to the
experiment observation by Tillmark & Alfredsson (1992).

Figure 5 shows the time evolution of the turbulent intensi-
ties of velocities and temperature. The fluctuating component
is defined by the deviation from the spatially-averaged value
at each time instance. Then, the root-mean-square values in
the entire channel are obtained irrespective of y. The figure
exhibits that the u′rms and θ ′rms increase linearly with time. It
is interesting to note that θ ′rms keeps larger value than u′rms.
This is cased by the redistribution between the normal com-
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Figure 6. Temporal evolution of the dissimilarity factor.
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Figure 7. Temporal evolution of the turbulent contribution of
FIK identity of St and C f .

ponents of Reynolds stresses, resulting in the energy transfer
from u′ component to the other components. Meanwhile, the
v′rms and w′rms are almost constant for 0 < t < 100, and gradu-
ally increase for 100 < t < 350, implying the spatial growth of
“actually turbulent” region with fine-scale eddies.

Let us define the dissimilarity factor (2St−C f )/C f , con-
sidering the Chilton–Colburn analogy with Pr = 1. Its posi-
tive value represents the efficient heat transfer, while its neg-
ative does the dominance of frictional drag. The time se-
ries of its percentage is plotted in Figure 6. In the period
of spatial growth for the spot (100 < t < 350), we obtained
positive values. In particular, the factor rapidly increases for
175 < t < 250, and then it turns to decrease. Therefore, the
effective heat transfer state (2St−C f > 0) is confirmed for the
rapidly growing process of the turbulent spot, until the spot
covers the entire domain. When the entire flow field is in a
turbulent state (t > 400), the factor is negative, which is a ten-
dency known in the literature (Fukudome et al., 2018).

Each of C f and 2St can be decomposed into laminar and
turbulent contributions by using FIK identity (Fukagata et al.,
2002; Yamamoto et al., 2013). Here, due to the temporal
growth of localized turbulence, the unsteady and asymmetric
terms (denoted by Cuv and Cvθ ) cannot be ignored, as follows:

C f ave =
2

Re︸︷︷︸
Laminar

+
∫ 1

−1

(
−u′v′

)
dy︸ ︷︷ ︸

Turbulent

+Cuv, (2)

2Stave =
2

RePr︸ ︷︷ ︸
Laminar

+
∫ 1

−1

(
−v′θ ′

)
dy︸ ︷︷ ︸

Turbulent

+Cvθ , (3)
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Figure 8. Time evolution of budget for the Reynolds shear
stress.
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Figure 9. Time evolution of budget for the turbulent heat
flux.

where the upper bar shows spatial average in x and z. The lam-
inar contributions are constant at 2/Re in both equations, since
the present Pr = 1. Figure 7 shows the summations of the lam-
inar and turbulent contributions of C f and 2St: see the solid
lines in the figure. Again, we focus on the spatial-growth pe-
riod at t = 150–300. As the term of 2St is larger than the term
of C f , we conjecture that the turbulent contribution produces
the effective heat transfer state, i.e., the deviation betweens
shear component of Reynolds stresses and turbulent heat flux
directly affect the effective hat transfer state.

Finlay, we discuss the transport equations of the Reynolds
shear stress −u′v′ and the turbulent heart flux −u′θ ′. By av-
eraging in the entire channel (i.e., averaging not only in x and
z, but also in y), represented by angle blankets 〈〉, the diffusion
terms are discarded. The transport equations are denoted as

D〈−u′v′〉
Dt

= 〈P12〉+ 〈ε12〉+ 〈Φ12〉 , (4)

P12 = v′v′
∂U
∂y

+u′v′
∂V
∂y

ε12 =
2

Re

(
∂u′

∂x
∂v′

∂x
+

∂u′

∂y
∂v′

∂y
+

∂u′

∂ z
∂v′

∂ z

)

Φ12 =−p′
(

∂v′

∂x
+

∂u′

∂y

)
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Figure 10. Time evolution of the differences between shear
component of Reynolds stresses and turbulent heat flux budget
terms.

D〈−v′θ ′〉
Dt

= 〈P2θ 〉+ 〈ε2θ 〉+ 〈Φ2θ 〉 , (5)

P2θ = v′v′
∂Θ

∂y
+u′θ ′

∂V
∂y

ε2θ =

(
1

Re
+

1
RePr

)(
∂v′

∂x
∂θ ′

∂x
+

∂v′

∂y
∂θ ′

∂y
+

∂v′

∂ z
∂θ ′

∂ z

)

Φ2θ =−p′
(

∂θ ′

∂y

)

where P12 and P2θ are production terms, ε12 and ε2θ are dissi-
pation terms, Φ12 and Φ2θ are pressure-strain terms, and p is
pressure.

Figures 8 and 9 represent temporal evolution of the bud-
get terms for Reynolds shear stress and turbulent heat flux, re-
spectively. The production and pressure-strain terms become
larger than the unsteady and dissipation terms. The produc-
tion terms show similar time evolution; however, P12 marks a
slightly larger value than P2θ . The pressure-strain terms mark
negative values, and the term of −p′∂u′/∂x shows a smaller
value than −p′∂θ ′/∂x in spite of considerable similarity be-
tween u′ and θ ′. The summation of both pressure-strain terms
for the Reynolds shear stress is comparable to the pressure-
strain term of turbulent heat flux.

Figure 10 represents the differences in each budget term
between the shear component of Reynolds stresses and the tur-
bulent heat flux. For the gradually-growth period (t < 150),
the dissipation and the pressure-strain term take positive and
negative values, respectively. For the spatial-growth period
(t = 150–300), the dissipation and the production term show
positive and negative values, respectively. The pressure-strain
term oscillates and the net value shows positive for the spatial-
growth period. On the other hand, after the developing process
for t > 350 (i.e., fully-turbulent state), the pressure-strain term
leads to a decrease in heat transfer compared to the friction,
while the production and dissipation show the adverse effect of
the dissimilarity where the friction outweighs the heat transfer.

CONCLUSION
We performed a direct numerical simulation of a spectral

method to study the dissimilarity between momentum and heat
transfers for a developing turbulent spot generated by the pair
vortices. We obtained the following conclusions.
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The obtained turbulent spot grows via two stages: grad-
ually and rapidly growth periods. For the gradual-growth pe-
riod, the longitudinal vortices extending in the flow direction
dominate. For the rapid growth period, which is called also
as the spatial-growth period, fine vortices are generated in
the turbulent spot and exhibits a linear spatial growth of the
spot. In this second stage, an effective heat transfer state is
confirmed. The FIK identity revealed that the dissimilarity
is mainly caused by the turbulent contributions owing to the
Reynolds shear stress and turbulent heat flux. In addition, the
difference between the Reynolds shear stress and the turbu-
lent heat flux is found in their dissipation and pressure-strain
terms, and their production terms show the adverse effect on
the effective heat transfer. For the fully-developed turbulent
state, effective heat transfer is prevented by the pressure-strain
terms.
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