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ABSTRACT
Simulating long lived coherent structures such as the great

red spot (GRS) on Jupiter is a challenge from a modeling and a
numerical standpoint. Presently, we employ a reduced-gravity
quasi geostrophic (QG) formulation to simulate the GRS. Fur-
thermore, we employ a discrete exterior calculus simulation
technique. DEC is known to be a robust numerical method
with strong structure preserving properties. To setup the phys-
ical conditions we decompose the potential vorticity into three
parts: one governs the potential vorticity in the zonal flow,
while a second part comprises of the potential vorticity in
the GRS vortex, and finally an intermediate potential vortic-
ity field which accounts for the deflection of the flow around
the GRS. An iterative technique is employed that constraints
the potential vorticity to observations of the GRS and zonal
flow velocity fields. Preliminary simulations of the GRS on a
full spherical surface are presented.

INTRODUCTION
The persistence of the giant vortex, Jupiter’s great red spot

(GRS), for over three hundred years has been a research topic
of interest for not only astrophysicists but also fluid dynamists.
Modeling and simulating the GRS can shed some light on its
origin as well as longevity. Previous attempts at simulating the
GRS have been limited to the β -plane and to a domain size
limited to the GRS plus a small neighborhood surrounding the
GRS (Shetty et al., 2007). Here, we consider spherical geom-
etry and a domain comprising of the entire spherical surface.

Discrete exterior calculus (DEC) is a robust numerical
method with desirable conservation and mimetic properties
(Hirani, 2003). Several DEC discretizations of the incom-
pressible Navier-Stokes/Euler equations are known to exactly
conserve mass, vorticity and kinetic energy (Mullen et al.,
2009; Mohamed et al., 2016). These structure preserving
attributes make DEC an appropriate choice for investigating
flows dominated by long-lived coherent structures. More-
over, the coordinate independence property of DEC makes is
convenient for investigating flows over arbitrary curved sur-
faces/manifolds. Presently, we develop a method for simulat-

ing GRS using a DEC scheme extending our previous work
(Jagad et al., 2021).

PHYSICAL SETUP AND NUMERICAL METHOD
We employ 1.5 layer reduced-gravity quasi geostrophic

(QG) flow assumption (Ingersoll & Cuong, 1981), wherein a
shallow upper layer (containing visible clouds and vortices)
of a constant density overlies a much deeper lower layer of a
constant density containing the shearing zonal flow. The two
layers are dynamically equivalent to a single layer with a rigid
bottom topography (parameterizing the flow in the lower layer)
and an effective gravity. The computational domain consists
of a spherical surface rotating about its north-south axis. The
governing equation for the system conserves potential vorticity
written as follows.

∂q
∂ t

+u ·∇q = 0, (1)

where q is the potential vorticity and u is the velocity vector.
The potential vorticity is expressed as

q(θ ,φ , t) =
(

∇
2− 1

L2
R

)
ψ (θ ,φ , t)+ f (θ)+

hb (θ)g
foL2

R
, (2)

where ψ is the stream function, LR is the Rossby deformation
radius, hb is a function of latitude/colatitude representing the
bottom topography, g is the reduced/effective gravity, f is the
Coriolis parameter, and f0 is the Coriolis parameter at a refer-
ence location. The Rossby deformation radius LR =

√
gHo/ fo,

(H0 is the mean height of the layer) is a length scale at which
the Coriolis force becomes comparable to pressure forces as-
sociated with the hydrostatic equilibrium. The Coriolis pa-
rameter f (θ) ≡ 2Ωcosθ , where Ω is the rate of rotation of
the domain and θ is the colatitude. The GRS drifts westward
with nearly a constant velocity, and in a frame of reference
translating with GRS, the QG equations (1) - (2) have a steady
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solution q(θ ,φ). Therefore, in a similar approach as Shetty
et al. (2007), we decompose the total potential vorticity into
three components as follows:

q(θ ,φ) = q∞ (θ)+qGRS (θ ,φ)+qINT (θ ,φ) , (3)

where q∞ is the potential vorticity in the zonal flow, qGRS is the
potential vorticity in the GRS vortex, and qINT is the potential
vorticity which accounts for the deflection of the flow around
GRS, and vanishes asymptotically into and away from GRS.
These components can further be expressed as:

qGRS =

(
∇

2− 1
L2

R

)
ψ

GRS, (4)

q∞ =

(
∇

2− 1
L2

R

)
ψ

∞ + f +
hb (θ)g

foL2
R

, (5)

qINT =

(
∇

2− 1
L2

R

)
ψ

INT. (6)

We employ the observations of the GRS and zonal flow
velocity fields (Mitchell et al., 1981; Limaye, 1986), and with
the GRS superimposed on the zonal flow, we compute the cor-
responding potential vorticity distribution as an initial guess.
To this end, we compute qGRS directly from equation (4), and
compute q∞ as follows. For the zonal flow, we compute the
Bernoulli function (B) distribution as

(
∇

2
ψ

∞ + f
)

êr×u∞ =−∇B, (7)

where u∞ is the zonal flow velocity field. We subtract the ki-
netic energy from it to arrive at the potential energy distribu-

tion gh. Next, we compute q∞ =
L2

R f 2
0 (ω+ f )
gh , where ω is the

relative vorticity. Then, we compute the product of the bot-
tom topography function and the reduced gravity distribution
via equation (5). We assume the GRS center as the reference
location for the computation of f0. The potential vorticity
distribution computed from the superposition of the GRS on
the zonal flow does not conserve advectively, because it does
not account for the deflection of flow around the GRS. There-
fore, it is updated using an iterative procedure as follows. In
a frame translating with the GRS, for a current velocity field,
we compute the updated potential vorticity that is advectively
conserved. Finally, we update the stream function by invert-
ing the Helmholtz equation (2), and repeat the procedure until
the flow field converges to a steady solution. An alternative
approach is to solve the governing momentum and continuity
equations in primitive variables as follows.

∂u
∂ t

+u ·∇u =−g∇h+ f (θ)u× êr, (8)

∇ ·u = 0. (9)

Here, we compute the potential energy term (gh) as

gh = f0ψ−ghb, (10)

where the bottom topography term ghb is determined as al-
ready discussed before. We use the aforementioned initial con-
dition (see figure 4), and let the flow field evolve to a steady
state.

RESULTS AND DISCUSSION
Figure 1 shows the distribution of qGRS. It reveals that

qGRS is the superposition of four nested patches of nearly uni-
form potential vorticity, which is in contrast to the assump-
tion of two nested patches for a model of qGRS in the previous
work of Shetty et al. (2007). Our computation shows two ad-
ditional narrow patches, the inner most and the outer most,
whereas the two intermediate patches are similar to that in
Shetty et al. (2007). Figure 2 shows the distribution of q∞, and
figure 3 shows its profile as a function of the colatitude. The
computed zonal flow potential vorticity comprises of nearly
homogenized bands, with each band separated from the adja-
cent ones by a steep meridional gradient of potential vorticity.
The profile of zonal flow potential vorticity has the appear-
ance of a staircase, and q∞ varies from the north to the south
pole non-monotonically. Figure 4 shows the initial potential
vorticity distribution computed from the superposition of the
GRS on the zonal flow. Figure 5 shows the distribution of to-
tal potential vorticity after 5.5 hours (equivalent to 0.26 eddy
turnover time), which is still evolving. We will examine the
flow physics of GRS for much longer simulations times in the
future.
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Figure 1. GRS potential vorticity distribution as computed from equation (4) and the observed GRS velocity field, and zoomed in
view of GRS showing the details.

Figure 2. Zonal flow potential vorticity distribution as computed from the aforementioned procedure and the observed zonal flow
velocity field
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Figure 3. Zonal flow potential vorticity as a function of colatitude. There are nearly homogenized bands of potential vorticity orga-
nized into staircase.

Figure 4. Potential vorticity distribution as computed from the superposition of GRS on the zonal flow.
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Figure 5. Potential vorticity distribution after 5.5 hours (equivalent to 0.26 eddy turnover time).
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