
12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan, July 19–22, 2022

EXTREME DIVERGENCE AND ROTATION VALUES OF THE INERTIAL
PARTICLE VELOCITY IN HIGH REYNOLDS NUMBER TURBULENCE

USING DELAUNAY TESSELLATION

Thibault Oujia
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ABSTRACT
The dynamics of inertial particles in homogeneous

isotropic turbulence at high Reynolds number, obtained by
three-dimensional direct numerical simulation (DNS), is an-
alyzed considering different Stokes numbers. Divergence and
rotation of the particle velocity are determined using Delau-
nay tessellation of the particle positions at subsequent time in-
stants. For large Stokes numbers heavy tails in the probability
density functions (PDFs) are found. Large divergence and ro-
tation values, as large as 50 and 40 times of the corresponding
standard deviation, respectively, can be observed. The helicity
of the particle velocity, which quantifies the swirling motion of
the particle flow, is likewise computed. The PDFs change their
shape with the Stokes number and show that for large num-
bers higher probability for vanishing helicity is found. This
confirms that for heavy particles helical motion is apparently
suppressed.

INTRODUCTION
Driven by numerous applications of particle laden turbu-

lence, e.g. dust in stars or the rain formation in atmospheric
clouds, there are many numerical and theoretical studies in
the literature, see e.g. (Brownlee, 1985; Shaw, 2003). Under-
standing the motion of inertial particles is therefore essential to
get insight into these phenomena and to develop sound mod-
els. The aim here is to determine the dynamical properties
of inertial particles in isotropic turbulence using finite time
tessellation-based measures. The particle velocity is crucial
to understand particle dynamics, i.e. convergence, divergence
of particles and the vortical or swirling motion of the particle
clouds. The challenging task is that we only know the velocity
of the particles at discrete points in space, i.e. at the particle
position.

Voronoi tessellation of the particle position has previously
been used, e.g. in Monchaux et al. (2010), for analyzing pref-
erential concentration of inertial particles. In our recent work,

Oujia et al. (2020), we proposed a Lagrangian approach to de-
termine the divergence of particle velocity using the volume
change rate of the Voronoi cells. Here we propose a further
new Lagrangian approach using Delaunay tessellation, to de-
termine the spatial velocity derivatives numerically by consid-
ering subsequent time instants. In particular the trace of the ve-
locity gradient tensor, corresponding to the divergence, which
yields information about sources and sinks and its antisym-
metric part, corresponding to the curl, which characterizes the
rotation can thus be computed. The helicity, i.e. the scalar
product of vorticity and velocity, can be likewise calculated
and swirling motion of particle clouds can consequently be
quantified. The dynamical properties of the particle velocity
can be assessed and detailed statistics of the divergence and of
the rotation can be performed.

Moreover, we will address the presence of extreme val-
ues in these quantities which is reflected in heavy tails in the
probability distribution functions (PDFs). Extreme events are
a generic feature of turbulence, see e.g., Moffatt (2021), and
make its prediction particularly difficult, e.g., for tornadoes,
large floods and other extreme events with devastating impact.
In the present work we will show that the divergence and ro-
tation values of the particle velocity likewise have extreme in-
tensities, much larger than their standard deviation.

The remainder of the manuscript summarizes first the
DNS flow data we analyze. Then we describe the method
to determine the divergence and rotation based on Delaunay
tessellation of the particle positions. Numerical results and ex-
treme divergence and rotation values are presented afterwards
and finally some conclusions are drawn.

FLOW DATA AND METHODS
Particle position and velocity data are generated by DNS

of particle-laden homogeneous isotropic turbulence, presented
in Matsuda et al. (2014). The incompressible Navier-Stokes
equations are solved in a 2π–periodic cube with a fourth or-
der finite difference scheme. Statistically stationary flow is
obtained by forcing at large scales. Uniformly distributed dis-
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crete particles are then injected into the fully developed flow
and are tracked in the Lagrangian framework. Maxey’s model
(Maxey, 1987) for inertial heavy point particles with Stokes
drag is used and the inertial dynamics is controlled by the
Stokes number, St = τp/τη , where τp is the particle relaxation
time and τη the Kolmogorov time. The equation of particle
velocity vvvp j is given by

dtvvvp j =−
vvvp j−uuup j

τp
, (1)

where uuup j is the fluid velocity at particle position xxxp j. The
subscript p denotes the quantity at the position of a particle,
and the subscript j denotes the particle identification number.

State of the art high resolution DNS with N3
g = 5123 grid

points is performed for the Taylor-microscale Reynolds num-
ber Reλ = 204, where Reλ ≡ u′λ/ν , ν is the kinematic viscos-
ity, and λ is the Taylor microscale. The number of particles N
is 1.5× 107 and the considered Stokes numbers are St = 0.5,
1, 2 and 5. Particles with different Stokes numbers, including
St = 0 were tracked in an identical turbulent flow.

We apply 3D Delaunay tessellation (Delaunay, 1934) us-
ing the Quickhull algorithm (Barber et al., 1996) to the par-
ticle positions at two consecutive time instants. To define a
cell corresponding to a particle, we use the dual graph of the
Delaunay tessellation. For stability reasons, instead of using
the circumcenter of the Delaunay cell, as done for the Voronoi
tessellation, we use the center of gravity to define the vertices
of the cell.

To compute the divergence of the particle velocity D(vvvp),
we consider the local number density averaged over a cell,
which is the inverse of the corresponding volume. Using the
fact that particles satisfy the conservation equation of the den-
sity np, Dtnp = −np∇ · vvvp where Dt = ∂t + vvv ·∇ is the La-
grangian derivative and considering two time instants tk and
tk+1 = tk +∆t of the Delaunay tessellation with time step ∆t,
we can determine the volume change. Thus we obtain (Oujia
et al., 2020),

D(vvvp) =−
1

np
Dtnp =

2
∆t

V k+1
p −V k

p

V k+1
p +V k

p
(2)

The curl of the particle velocity, is defined by computing
the circulation of the velocity field of particles over a cell. This
can also be expressed as the divergence of the velocity of the
fluid which has been rotated in a direction π/2 with respect to
the direction of the curl. We define vvv⊥x = Axvvv, vvv⊥y = Ayvvv and
vvv⊥z = Azvvv where Ax, Ay and Az are rotation matrices around the
different axes. We obtain that the curl of the particle velocity
C (vvvp) is given by

C (vvvp) =

D
(
−vvv⊥p,x

)
D
(
−vvv⊥p,y

)
D
(
−vvv⊥p,z

)
 (3)

The accuracy and reliability of the method to compute the
divergence, curl and furthermore the velocity gradient tensor
of the particle velocity are studied in Oujia et al. (2022). We
find that the spatial order of the method is the inverse of the
dimension of the space.

RESULTS
Figure 1 shows two-dimensional cuts of the particles

colored with the divergence D(vvvp) (top) and the enstrophy
||C (vvvp)||22 (bottom) for St = 0 (left) and 1 (right). The particles
for St = 0, i.e. fluid particles, are randomly distributed because
the flow is incompressible. We can deduce that for St = 0 the
divergence values different from zero are numerical errors due
to the sampling. Their distribution is homogeneous and we
find mostly values close to zero, except in some regions, which
are characterized by strong enstrophy values. The enstrophy
of the fluid particles (bottom, left) shows a non homogeneous
distribution and is spotty, characteristic for intermittent quan-
tities. In contrast to fluid particles, inertial particles (Figure 1,
right), here for St = 1, are clustered. We can observe the pref-
erential concentration of particles, corresponding to clusters in
regions of low fluid vorticity and voids in regions of large fluid
vorticity. This observation is explained by the fact that inertial
particles are ejected from high fluid vorticity regions due to
the centrifugal force. We also find the high convergence and
divergence value are observed close to each other. We con-
jecture that the particles are crossing. In a sufficiently large
region of low fluid vorticity, we can observe that divergence
and enstrophy values of inertial particles are close to zero.

PDFs of divergence and rotation are shown in Figure 2.
As the turbulence is isotropic, we do not distinguish between
the different vector components of C (vvvp), and we compute the
histograms of all these components together. For fluid particles
in the continuous setting, the divergence of the fluid velocity
vanishes exactly, whereas in the discrete setting D(vvvp) differs
from zero due to the sampling and the computation of the dis-
crete divergence. For inertial particles, the PDFs of the diver-
gence and of the rotation deviate from those for fluid particles.
This nicely illustrates that for large Stokes numbers heavy tails
and extreme values can be observed in both quantities, going
up to more than 50 and 40 times of the standard deviation for
the divergence and the rotation, respectively. The PDFs of the
divergence and of the rotation have much heavier tails com-
pared to the fluid vorticity, and the extreme values increase
significantly with the Stokes number. This is quantified fur-
ther in Table 1, where each of the variance and flatness of the
divergence D(vvvp) and curl C (vvvp) is given as a function of
the Stokes number. We observe that the variance of the diver-
gence increases as the Stokes number increases. The flatness
of the divergence first increases with St with a maximum for
St = 1 and then decreases. The large flatness value is a sign of
strong non-Gaussianity and the spatially intermittent behav-
ior of the divergence for St = 1. These observations suggest
that the global number of particles with large divergence val-
ues increases with the Stokes number. Note that for St > 1 tails
become shallower with increasing St when the PDFs are nor-
malized by the standard deviation, not shown here. We recall
that the divergence of the particles is induced by the vorticity
of the fluid flow via the centrifugal force. The decay of the
flatness for St ≥ 2 can be explained by the particle’s inertia. In
fact, heavy particles are less subjected to the small scale fluc-
tuations of the fluid vorticity, so that the particles follow less
the fluid flow and thus have less tendency to accelerate sud-
denly. The variance of the curl decreases from St = 0 to 0.5
and then increases as the Stokes number increases. The flat-
ness decreases from St = 0 to 0.5 and then increases with St
with a maximum for St = 2 and then decreases. The reduc-
tion of the variance and flatness of the curl between St = 0
and 0.5 can be explained by the fact that the particles in the
high velocity regions in the fluid domain are ejected due to the
centrifugal force. However, for a small St the particle velocity
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Figure 1: Spatial distribution of the particles colored with the divergence D(vvvp) (top) and the enstrophy ||C (vvvp)||22 (bottom)
at particles positions for St = 0 (left) and 1 (right) for a slice of thickness 4η . Note that the color scale is linear for the
divergence and logarithmic for the enstrophy.

at a given position is still close to that of the fluid. This ex-
plains the reduction of the curl value between St = 0 and 0.5
as well as that of the variance. The increase of the variance of
the curl value for larger Stokes numbers could be explained by
the higher inertia. Due to the sling effect, the particle trajecto-
ries may cross each other, or the particles may enter high fluid
vorticity regions and experience strong vortical motion.

Figure 3 shows the PDF of the relative helicity of parti-
cle velocity for different Stokes numbers and randomly dis-
tributed particles. The relative helicity of the particle velocity
is defined as

H (vvvp) =
vvvp ·C (vvvp)

||vvvp||2 ||C (vvvp)||2
(4)

We can observe that for St ≤ 1 there are two maxima at
Hp =±1, which means that we have a higher probability that
the vorticity is oriented in the same or opposite direction as the
particle velocity. This corresponds to helical motion, which is

a signature of coherent structures in the particle laden flow. In
contrast we find for St = 5 two minima at Hp = ±1 and a
maximum close to 0 which means that the vorticity has higher
probability to be orthogonal to the particle velocity, which in-
dicates incoherent particle flow motion. We can observe a tran-
sition from a convex to a concave shape at St = 2. Note that the
asymmetry of the distribution can be explain by the presence
of helicity asymmetry in the fluid flow due to initial forcing.

CONCLUSIONS
We analyzed high resolution DNS data of particle laden

turbulence considering different Stokes numbers. We pro-
posed a semi-Lagrangian method to determine the divergence
and rotation of the particle velocity. To this end we consid-
ered the time change of the Delaunay tessellation of the parti-
cle positions and computed the spatial derivatives in the La-
grangian frame. Consequently the divergence, the curl and
likewise the helicity of the particle motion could be quantified.
We showed that the divergence and curl PDFs exhibit heavy
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Figure 2: PDFs of divergence Dp (top) and rotation Cp
(bottom) for the particle velocity for different Stokes
numbers including fluid particles.

Table 1: Variance V and flatness F of divergence Dp and
curl Cp as a function of the Stokes number.

St 0 0.5 1 2 5

V(Dp) 0.87 16.9 43.8 88.5 152

F(Dp) 15.9 55.3 64.0 33.5 15.8

V(Cp) 68.8 42.7 49.7 60.1 82.3

F(Cp) 7.83 7.02 12.0 17.7 14.9

tails and we found that for large Stokes numbers extreme val-
ues are above 40 times the corresponding standard deviations.
In future work, we plan to perform multiscale analysis using
multiresolution tessellations.
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Figure 3: PDFs of the relative helicity (cosine of the
angle between velocity and vorticity) Hp of the parti-
cles for different Stokes numbers including fluid parti-
cles (St = 0).
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