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ABSTRACT
We propose a three-equation model which reproduces the

quasi-cyclic behaviour of turbulent flow [Araki et al. (2022)].
We examine a 3D flow driven by steady forcing at various
Reynolds numbers (Re) to find a perfectly time-periodic flow
at a specific low Re and quasi-cyclic flow at higher Re. The
two states are continuously connected when changing Re. A
mode-by-mode analysis of the periodic flow allows us to for-
mulate the minimal model, which describes the evolution of
three families of scales with their nonlinear interactions, dissi-
pation, and driving terms. By calibrating the model parameters
to the DNS results, when possible, we find a qualitatively sim-
ilar periodic solution to the DNS. By increasing the “Reynolds
number” of the model, we find permanent chaos, which we
compare to turbulence. The same model also reproduces prob-
abilistic transitions between chaotic and steady states for the
different parameter sets. The scaling of this sudden relaminar-
isation agrees with the ones observed in turbulence to some
extent. We consider that our minimal model reproduces sev-
eral key properties of turbulence.

BACKGROUND
Quasi-Cyclic Behaviour (QCB) is observed in many tur-

bulent flows and is sometimes related to the energy cascade
mechanism. For example, QCB is observed in periodic box
turbulence driven by a steady forcing and found to be asso-
ciated with vortex stretching of hierarchical coherent vorti-
cal structures responsible for the energy cascade from large
to small scales (Goto et al., 2017). Furthermore, QCB is as-
sociated with the concept of unstable periodic orbits and has
been extensively studied (Lucas & Kerswell, 2017; van Veen
et al., 2019). Another important example is the self-sustaining
process in near-wall turbulence (Waleffe, 1997).

This study finds a non-trivial periodic flow in Direct Nu-
merical Simulation (DNS), using a time-independent Taylor–

Green forcing. The features of the periodic flow are similar to
developed turbulence at higher Reynolds numbers. Our goal
is to illustrate the similarity between the temporal dynamics of
the periodic and turbulent flow and model them with a minimal
degree of freedom to understand the origin of the QCB.

Thereto, we conduct DNS of the Navier-Stokes equations,

{
∂tu+(u ·∇)u =−∇p+ν∇

2u+ f,
f = (− f0 sinxcosy, f0 cosxsiny,0),

(1)

(2)

along with the incompressibility condition ∇ · u = 0. Here,
u, p, and f denote velocity, pressure, and steady Taylor–Green
body force fields, respectively. The kinematic viscosity ν is
the control parameter of the flow and we define the Reynolds
number Re ≡

√
f0/
∣∣k f
∣∣3/2

ν with the forced wavenumber
k f = (1,1,0). We set the forcing coefficient f0 to unity.

We summarise both 3D Periodic Flow (3DPF) at Re =
5.83 and turbulence at Re = 29.7 in Fig. 1. Visualisations of
vorticity magnitude (Fig. 1 (a,c)) depict similar spatial struc-
tures for both Re, namely, the forcing-induced large-scale
columnar vortices and smaller vortices in antiparallel orien-
tation. Here, low-pass filtered quantity is defined by u<(x) ≡∫

drG(r/σ)u(x+ r), where G(r/σ) is Gaussian function and
we set σ =

√
2
∣∣k f
∣∣ = 2. Parametric time series of energy in-

put rate P ≡ 〈f ·u〉 and energy dissipation rate ε = ν〈|ω|2〉,
where ω = ∇×u and 〈·〉 is the spatial average, show counter-
clockwise cycle in the 3DPF (Fig. 1 (b)). Here, the time
series are normalised by the characteristic time scale T ≡(∣∣k f

∣∣ f0)−1
= 0.840, where

∣∣k f
∣∣ = √2 and f0 = 1. The tur-

bulent time series in Fig. 1 (d) also displays intrinsic QCB
after a phase-averaging process. See Araki et al. (2022) for
the detail of this procedure. We note that for intermediate
5.83 < Re < 29.7, we observe continuously changing phase-
averaged 〈P〉phase–〈ε〉phase plots from Fig. 1 (b) to Fig. 1 (d).
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Figure 1. (a,c) Visualisations of vortical structures and (b,d) parametric time series of energy dissipation rate ε(t) against energy
input rate P(t) in (a,b) low Reynolds number periodic flow at Re = 5.83 and (c,d) high Reynolds number turbulent flow at Re = 29.7.
Visualisations show isosurfaces of (a) |ω| in cyan and (c) |ω| in cyan and low-pass filtered |ω<| in red. Parametric time series show
(b) original time series for 40T and (d) phase averaged time series for 20T . The original time series in panel (b) are normalised by the
maximum Pmax of P(t). The phase-averaged time series are also normalised during the process. Thus the maximum of 〈P〉phase is also
unity. Dark to light colours represent the time evolution, and the gap between two consecutive dots denotes 5T .

Thus, we conclude that the current flow exhibits QCB re-
gardless of the Reynolds number (See also Fig. 12 of Goto
et al. (2017) for results with three different forcing schemes at
higher Re).

THREE-EQUATION MODEL
We consider a minimal model to reproduce such robust

QCB irrespective of Re. By investigating the Fourier mode dy-
namics of the 3DPF, we find a few modes energetically dom-
inate the 3DPF. Thus, we can decompose the flow into three
“families” of Fourier modes. Figure 2 shows the schematic of
such a grouping. The first family corresponds to the forced
mode k f = (1,1,0). Next, we define the primary energetic
scale with six Fourier modes. The forced plus the primary
scales (seven Fourier modes in total) reproduce more than
98 % of the time average of energy E = 〈|u|2〉/2 in the 3DPF.
Last, we introduce the secondary scale, which consists of the
rest of the Fourier modes. Although the energy of these modes
(large-scale representative) is small, their enstrophy (small-
scale representative) is non-negligible.

After assessing the possible triad interactions among
these three scales (triangles in Fig. 2), we propose the follow-
ing three-equation model,


dtX =−A1Y 2 +A3Y Z −νK2

X X +F,

dtY =+A1XY −A2Z2 +A4XZ −νK2
YY,

dtZ = +A2Y Z− (A3 +A4)XY −νK2
ZZ,

(3)

where X ,Y , and Z denote the characteristic velocity ampli-
tude of the forced, primary, and secondary scales, respec-
tively. The right-hand side of Eq. (3) consists of nonlinear
terms with coefficients Ai with i= 1–4, viscous damping terms
multiplied by νK2

α where Kα is a characteristic scale factor
with α = {X ,Y,Z}, and a forcing term F acting solely on the
forced scale. We define the Reynolds number of the model by
Re ≡ 1/ν to analyse the model. Note that sign of Ai is set
to satisfy the detailed energy conservation in the triad inter-
actions. The coefficients A1 and A2 represent the scale-local
forward energy transfer from X to Y and Y to Z, respectively.
The remaining A3 and A4 terms represent non-local interac-
tions that give the model additional freedom in the parameter
space.

We fit six of nine parameters of the model by DNS of
3DPF. We investigate the energy equation of the model and
compare each term with the DNS result to estimate the pa-
rameters. The scale-local nonlinear coefficients A1 and A2 are
compared to the average energy transfer from the forced mode
to the primary energetic modes while ignoring the scale non-
local terms, A3 = A4 = 0. The viscous coefficients K2

α are
evaluated by the time average of εα/2νEα , where Eα and εα

are energy and energy dissipation rate of scale α = {X ,Y,Z}
of the 3DPF. The forcing term F is defined from P/

√
2EX .

The obtained parameters are, A1 = 0.4, A2 = 4, F = 0.7, K2
X =

2, K2
Y = 5, and K2

Z = 15. This analysis leaves two unset pa-
rameters A3 and A4. The model has one control parameter
Re≡ 1/ν .

RESULTS
By setting A3 = −0.5 and A4 = −0.95, we obtain a bi-

furcation diagram shown in Fig. 3 (a). The first bifurcation is
supercritical from steady to periodic solutions at Re ≈ 12.0,
followed by a subcritical one to a more complex periodic so-
lution at Re ≈ 14.0. Then, we identify a critical Re of the
permanently chaotic solution at 14.060 < Recr < 14.061. We
realize that the periodic and chaotic solutions take similar or-
bits in the phase space as shown in Fig. 3 (b). Thus, the chaotic
orbit exhibits QCB.

We compare the 3DPF and the periodic solution of the
model in Fig. 4 by computing two quantities. One is the en-
ergy of the forced mode from which we subtract the laminar
base flow, defined by EX−X0 ≡ |u(k f )− f/2νk2

f |2/2 for the
DNS and EX−X0 ≡ (X − F Re/K2

X )
2/2 for the model. The

other is the energy contained by the remaining modes EY+Z .
In the DNS, EY+Z means the energy of the flow without the
forced mode k f . In the model, EY+Z ≡ Y 2/2+ Z2/2. Fig-
ure 4 shows the qualitatively same periodic fluctuations in
terms of the relation of amplitude and phase of peaks between
two quantities. Notably, both EX−X0 and EY+Z show expo-
nential growth and decay, reminiscent of the predator-prey dy-
namics. Although our three-equation model (3) is different
from the standard two-species Lotka-Volterra equations, this
similarity suggests the link between the QCB in turbulent flow
and a kind of predator-prey relation between large and small
scale vortex structures. We stress here that the model without
the non-local triad, A3 = 0, A4 = 0, or A3 +A4 = 0, does not
excite permanent fluctuations, indicating the necessity of the
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Figure 2. Schematic of three different scales. We visualize |ω| distributions of typical Fourier modes in each scale. The forced wave
vector is k f = (1,1,0). In the primary scale, we visualize k = (0,0,2) and (0,2,2) modes. For the secondary scale, we visualize
k = (3,1,0) and (2,2,2) modes for example. Triangles denote triad interactions between different scales satisfying triad interaction
conditions, k+p+q = 0.

(a) (b)

Figure 3. (a) Bifurcation diagram of the model (3) by the local extrema of Y . See main text for the parameter set-up. Blue, red, and
yellow points denote steady, periodic, and chaotic solutions, respectively. Inset: close-up in the range shown by the red rectangle in the
main plot. (b) Periodic (red, Re = 14.05 shown by the red vertical dashed line in panel (a)) and chaotic (black, Re = 14.1) orbits of the
model (3). The chaotic orbit is tracked over 100 periods. The yellow arrow indicates the direction of the orbit.

scale non-local triad interactions to maintain the QCB. Note
that we observe fast oscillations in the model (Fig. 4 (b)) and
not in the DNS result (Fig. 4 (a)). By the mode-by-mode anal-
ysis, we find that there are also rapid fluctuations in specific
Fourier modes of the 3DPF. However, such behaviour is com-
pensated between the symmetric modes and does not appear in
Fig. 4 (b).

Another intriguing property of the model is that it exhibits
a sudden transition from a chaotic to steady states as shown
in Fig. 5 (a). Here, we employ a different parameter set-up
(A3 = 0.4 and A4 =−0.5 with other parameters being as same
as in Fig. 3 and Fig. 4 (b)). This probabilistic process reminds
us of the sudden relaminarisation observed in linearly forced
box turbulence (Linkmann & Morozov, 2015). We compute
the survival probability PRe(t) of how likely the solution in a
chaotic regime at a given time t to plot in Fig. 5 (b). We find

the exponential scaling with the characteristic time scale τ ,

PRe(t) = cexp[−t/τ(Re)], (4)

in which τ also displays exponential scaling against Re,

τ(Re) = c′ exp[aRe], (5)

as shown in Fig. 5 (b) inset. Although Eq. (4) is consistent
with the literature (Linkmann & Morozov (2015)), the expo-
nential scaling of τ(Re) by Eq. (5) crucially differs from a
super-exponential behaviour observed in Linkmann & Moro-
zov (2015). We speculate that this reflects the minimum degree
of freedom in the model.

3



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

(a) (b)

Figure 4. Time series of fluctuating energy EX−X0(t) of the forced scale and residual energy EY+Z(t) of (a) 3DPF of the Navier-Stokes
equations (1) and (b) the model (3) at Re = 14.05. See main text for the parameter set-up and the definition of the quantities. Note that
time in panel (a) is normalised by the characteristic time scale T .

(a) (b)

Figure 5. (a) Time series of (X ,Y,Z) of the model (3) at Re = 32 with a random initial condition. See main text for the parameter
set-up. (b) Survival probability PRe(t) of the transient chaos of the model (3) evaluated from 10,000 samples for each Re. The parameter
set is the same as panel (a). Different symbols correspond to different values of Re. Dashed line denotes exponential fitting (4) using
0.01≤ PRe(t)≤ 0.9 data. Inset: Escape rate 1/τ as a function of Re. Dashed line denotes the exponential fitting (5). Symbols are the
same as the main plot.

CONCLUSIONS
We investigate the Quasi-Cyclic Behaviour (QCB) ob-

served in a periodic box flow driven by the steady Taylor-
Green forcing (2). We reveal that there is intrinsic periodicity
in turbulent flow by phase-averaging the complex time series
(Fig. 1 (d)), which is similar to the 3D periodic flow (3DPF) at
low Re (Fig. 1 (b)). By conducting the mode-by-mode analysis
of the 3DPF, we propose the three-equation model (3) describ-
ing the evolution of the velocity amplitude of the three distinct
scales, namely forced, primary (energy-containing), and sec-
ondary (the rest) Fourier modes (Fig. 2). We fit the model
parameters from the 3DPF to find the qualitatively similar pe-
riodic solutions (Fig. 4). The model exhibits permanent chaos
at higher Re, which corresponds to statistically steady turbu-
lence (Fig. 3). In a different parameter set-up, we find sudden
relaminarisation of transient chaos (Fig. 5 (a)) with the expo-
nential scaling of the survival probability (Fig. 5 (b)). We con-
clude that the proposed minimal model with only three vari-
ables contains fundamental properties of turbulence. We will
further investigate the model analytically and numerically and
its similarity with the existing model to present a complete pic-

ture of the model at the conference.
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