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ABSTRACT
Eddy-resolved simulation of external flow usually re-

quires inflow conditions representing a zero-pressure-gradient
turbulent boundary layer (ZPGTBL) flow, and the quality of
the inflow conditions directly impact the accuracy of the sim-
ulation. The present study proposes a new method to generate
ZPGTBL-type inflow turbulence, i.e. the equivalent bound-
ary layer (EBL). Based on half channel model, EBL approxi-
mates ZPGTBL flow by recovering the mean momentum bal-
ance with driving force. It simulates streamwise equilibrium
turbulence, applying periodic boundary conditions, and thus
overcomes the complexity and artificiality incurred by the clas-
sic recycling-rescaling methods. The current paper discusses
the difference between turbulent channel and boundary layer
flows from the equation point of view, and designs the driv-
ing force corresponding to the mean inertial force of bound-
ary layer. Also, the total shear stress models for obtaining the
driving force are validated both a priori and a posteriori. Di-
rect numerical simulations (DNS) are carried out for EBLs at
Reθ = 1000,1420 and 2000 (where Reθ is the Reynolds num-
ber based on momentum thickness), showing that EBL well re-
flects the statistical characteristics of ZPGTBL at correspond-
ing Reynolds numbers. The application of EBL to the genera-
tion of inflow conditions is also demonstrated by DNS of tur-
bulent boundary layers with inlet Reθ = 1000,1420 and 2000.
The computational results agree well with generally acknowl-
edged DNS data published in literature, in terms of streamwise
developing statistics and profiles and energy spectra at charac-
teristic cross-sections. Judging from the mean velocity, the ad-
justment section is shorter than one boundary layer thickness.

1 INTRODUCTION
The present study focuses on the generation of inflow

turbulence fluctuations representing the zero-pressure-gradient
turbulent boundary layer (TBL). A classic approach to this
goal is the ’LWS’ method, proposed by Lund et al. (1998) and
adapted from the coordinate transformation method by Spalart
(1988). Due to its simplicity and low cost in computation,
LWS method has been one of the most popular methods in in-

flow turbulence generation. The basic idea of LWS method
is to rescale the downstream flow based the self-similarity of
TBL and reintroduce it to the inlet. Its key assumption is that
the inner region of TBL flow scales in y+ and the outer re-
gion in y/δ , where y+ and y/δ are the wall-normal coordinates
measured by inner and outer length scales respectively. There-
fore, after piecewise rescaling and appropriate matching, flow
at a downstream position can be recycled to serve as boundary
condition at the inlet.

Despite the major success achieved, LWS method is sub-
ject to some drawbacks. The method is artificial in three re-
spects. 1. It relies on the streamwise developing law of TBL,
which is derived from the log law or power law of the mean
velocity. 2. It explicitly assumes the form of self-similarity, in-
cluding the universal law of the wall in the inner region and de-
fect law in the outer region, which, though being fairly precise
for the mean streamwise velocity, are not satisfactory for the
mean wall-normal velocity and velocity fluctuations; More-
over, the range of applicability of these two laws are not pre-
cisely clear, which leads to the third problem: 3. The weight-
ing function and its parameters to match the two regions are
empirically chosen, reflecting the arbitrariness in applying the
inner and outer laws. Another difficulty concerns the choice
of the recycling position. The recycling plane should not be
too close to the inlet, because it must fall in healthy flow
sections possessing self-similarity, avoiding unphysical adjust-
ment zones near the inlet and outlet; Besides, sufficient natu-
ral evolution of turbulence structures should be accommodated
between the inlet and recycling plane, especially for high-
Reynolds-number turbulence which contains abundant large-
scale structures. On the other hand, the recycling plane should
not be too far from the inlet, because the spanwise and tem-
poral scales need also be matched aside from the wall-normal
rescaling.

The above discussion has revealed the shortcomings of
the traditional method in generating TBL-type inflow turbu-
lence. In the current study, we propose a new method to gen-
erate TBL-type inflow turbulence fluctuations. This method is
based on the open-channel model, therefore naturally apply-
ing the streamwise periodic boundary condition to simulation
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of the spatially homogeneous flow. Meanwhile, in order to fill
the gap between channel flow and TBL, external force is added
to the open-channel flow to drive it closer to the real TBL. The
rest of the paper is organized as follows. In Section 2 we in-
troduce the mathematical formulations including the theoretic
basis of EBL and how the driving force can be modelled. In
Section 3 the idea of using EBL to generate inflow turbulence
for TBL is validated by DNS a priori and a posteriori. Finally,
in Section 4, we conclude the present work.

2 FORMULATION
The computational models in the current study are open-

channel and TBL, whose symbols and notations are defined as
follows. x,y,z represent the streamwise, wall-normal and span-
wise directions respectively, and u,v,w are the correspond-
ing velocity components (also denoted by their vector forms
xxx,,,uuu). The boundary layer thickness, displacement thickness
and momentum thickness are denoted by δ ,δ ∗,θ respectively.
The Reynolds number Re = U∞δ/ν is defined by the bound-
ary layer thickness, free velocity U∞ and kinetic viscosity ν .
Also frequently used are the Reynolds number based on the
momentum thickness Reθ =U∞θ/ν and the friction Reynolds
number Reτ = uτ δ/ν , where uτ is the friction velocity. The
superscript ‘+’ represents normalization by the wall viscous
units, and η = y/δ is the wall-normal coordinate scaled by
outer boundary layer thickness. The prime symbol ‘(·)′’ rep-
resents fluctuations and the angle bracket ‘〈·〉’ or capital letters
represent mean quantities averaged along temporal and span-
wise (and streamwise if the flow is streamwise equilibrium)
directions.

2.1 EQUIVALENT BOUNDARY LAYER
Existing researches have explained the difference be-

tween channel and TBL flows from the aspect of physical
mechanisms. Here we try to look for another interpretation
from the equation point of view. The theory of turbulence
energy hierarchy has made clear that the energy is first ex-
tracted from the mean motion, transferred from large to small
scales, and eventually transformed into heat at dissipation
scales. Therefore, the mean motion plays an important role
in differentiating one flow from another. Mathematically, the
two flows are both governed by the Navier-Stokes (NS) equa-
tions, but the different geometric symmetry leads to different
simplifications of the equations.

The mean equations of motion for channel flows are


1
ρ

∂P
∂x

=−d < u′v′ >
dy

+ν
d2U
dy2

1
ρ

∂P
∂y

=−d < v′v′ >
dy

(1)

Under the assumption of boundary layer, the mean equations
of motion for TBL are


(

U
∂U
∂x

+V
∂U
∂y

)
=−d < u′v′ >

dy
+ν

d2U
dy2

1
ρ

∂P
∂y

=−d < v′v′ >
dy

(2)

A comparison the above equations reveals that the streamwise
momentum balance in a channel flow is between the mean

pressure gradient and the total shear stress (sum of the mean
viscous shear stress and the Reynolds shear stress), while that
in TBL is between the mean inertial force and the total shear
stress. The mean pressure gradient ∂P/∂x in channel flow is
constant throughout the whole field, while the inertial force
U∂U/∂x+V ∂U/∂y in TBL (at a fixed streamwise position)
is varying along the wall-normal direction: It is zero at the
wall and outside the boundary layer, and peaks somewhere in-
side the boundary layer (see Figure 1(c)). This observation
of the equations suggests that, the wall-normal distribution of
the driving force counterbalancing the fluid shear is key to the
statistical differences between channel flows and TBL.

The instantaneous streamwise equation of motion for
channel flows is

∂u
∂ t

+uuu ···∇∇∇u =− 1
ρ

(
∂P
∂x

+
∂ p′

∂x

)
+ν∆u (3)

We define the driving force in TBL (at a given Reynolds num-
ber) as the mean inertial force

Fx =−
(

U
∂U
∂x

+V
∂U
∂y

)
=U

∂V
∂y
−V

∂U
∂y

(4)

and use it in place of the mean pressure gradient term in Equa-
tion 3, i.e.

∂u
∂ t

+uuu ···∇∇∇u = Fx−
1
ρ

∂ p′

∂x
+ν∆u (5)

Simulating Equation 5 with open-channel configuration, ap-
plying streamwise periodic boundary conditions, the mean
momentum balance in TBL at this Reynolds number should
be recovered. We term such a streamwise equilibrium turbu-
lent flow as the equivalent boundary layer (EBL).

2.2 DRIVING FORCE
Before simulating EBL, the wall-normal distribution of

the driving force needs to be known. Equation 2 shows
the driving force (mean inertial force) to be balanced with
the wall-normal derivative of the total shear stress under the
boundary layer assumption. Therefore, we consider modeling
the total shear stress. Figure 1(a) shows the wall-normal dis-
tributions of the total shear stress of TBL at various Reynolds
numbers. It can be seen that the total shear stress is Reynolds-
number-independent if scaled by the wall shear stress τw and
the boundary layer thickness δ . Since the driving force is equal
to the wall-normal derivative of the total shear stress, it can be
scaled by τw/δ and δ , as in Figure 1(c). Researches have at-
tempted to model the total shear stress provided its universal-
ity. Chen & She (2016) modelled the total shear stress in TBL
as

τ
+
tot(η) = 1−η

3/2 (6)

Kumar & Krishnan (2021) argued that the total shear stress
is function of the shape factor H and normalized mean wall-
normal velocity V/V∞, where V/V∞ is universal (Wei &
Klewicki, 2016) while H slowly varies with the Reynolds
number. They proposed a model in the form of

τ
+
tot(η) = H(1− V

V∞

)+(H−1)(η−1) (7)
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Figure 1. Total shear stress and driving force in TBL. (a) To-
tal shear stress in TBL, from DNS (Schlatter & Örlü, 2010)
of TBL at Reθ = 677−4061; (b) Models (Chen & She, 2016;
Kumar & Krishnan, 2021) of TBL total shear stress; (c) Mean
inertial force in TBL, equal to the driving force in EBL (leg-
ends as in panel a); (d) Driving force obtained from total stress
models (legends as in panel b).

where the universal function V/V∞ can be fitted by a hyper-
bolic tangent function V/V∞ = tanh(aη +bη3), with the fit-
ting parameters chosen as a = 0.5055,b = 1.156. The above
two models are not bounded when η → ∞, so in practice η is
replaced by a rescaled wall-normal coordinate

η̄ =
η

(1+ηα )1/α
(8)

This rescaled wall-normal coordinate satisfies η̄ ≈ η when η

is small, and η̄ → 1 when η → ∞. The parameter α in the
function controls the damping rate, and the values fitting the
DNS data best are α = 17 for the Chen & She (2016) model
and α = 8 for the Kumar & Krishnan (2021) model.

Figure 1(b,d) shows the modelled total shear stress and
its derivative at Reθ = 1420. The models both agree well with
the DNS data in terms of the total shear stress, but the errors
are magnified after taking the derivative. The model of Chen
& She (2016) behaves well near the wall, but shows a need
for higher-order approximations at the edge of boundary layer.
The model of Kumar & Krishnan (2021) agrees better with the
DNS data in the outer region, but violates (∂τtot/∂y)w = 0 at
the wall, which is obvious since the derivative of Equation 7,
∂τ

+
tot/∂η =H

[
1− (a+3bη2)/cosh(aη +bη3)

]
−1 does not

reach zero for η = 0. In sum, errors in the driving force must
be induced by taking derivative of the modelled total shear
stress. But as volume force, the driving force’s integral prop-
erties is more important, while the errors in its specific distri-
bution have only secondary influences. This will be confirmed
by numerical simulations in Section 3.1.

3 NUMERICAL TESTS
In this section DNS will be carried out to examine the

EBL model and to evaluate its performance in generating in-
flow boundary conditions for TBL. The numerical schemes
are described as follows. The second-order central difference
and the Crank-Nicolson schemes are used for spatial and tem-
poral discretization respectively. The projection method pro-

(a)

(b)

Figure 2. Instantaneous flow fields of EBL. (a) EBL-
1000; (b) EBL-2000. Visualized are iso-surfaces of Q ≡
−0.5(∂ui/∂x j)(∂u j/∂xi) at Q = 1, colored by the streamwise
velocity u.

posed by Kim et al. (2002) is used to decouple the momen-
tum and continuity equations. This projection method ensures
the second-order precision in both space and time, and more-
over, it requires no pressure boundary condition because the
divergence-free condition is handled directly by the ‘projec-
tion’ step. For details of the algorithm the readers are referred
to the original papers (Perot, 1993; Kim et al., 2002).

3.1 Simulation of EBL
DNS is carried out for EBL at three Reynolds numbers.

The dimensionless governing equations are


∂uuu
∂ t

+uuu ···∇∇∇uuu =−∇∇∇p+
1

Re
∆uuu+

1
2

C f Reτ F+
x eee1

∇∇∇ ···uuu = 0
(9)

The boundary conditions of open-channel are applied, namely
periodic boundary conditions for the streamwise and spanwise
directions, no-slip wall boundary condition on the bottom, and
free-slip boundary condition (∂u/∂y = ∂w/∂y = 0,v = 0) on
the top. The parameters of the cases are listed in Table 1. The
domain sizes are chosen in consideration of the size of VLSM
(about 1− 2δ wide and O(10δ ) long (Smits et al., 2011)).
The grid resolution is chosen to be higher than that used in
the DNS research by Schlatter et al. (2009). The grid points
are stretched following a hyperbolic tangent distribution in the
wall-normal direction. The cases EBL-1000, EBL-1420 and
EBL-2000 are preliminary examinations of EBL, in which we
wish to exclude the influence related to error in the driving
forces, so C f and Reτ F+

x appearing in the expression of driv-
ing force are interpolated from the DNS results by Schlatter &
Örlü (2010), which are deemed exact. Other than that, we test
the performances of driving force models in EBL simulations
through cases EBL-1420-KK21 (using Equation 7) and EBL-
1420-CS16 (using Equation 6). These two cases have the same
configurations to case EBL-1420, except for the driving force.

Figure 2 visualizes the instantaneous flow fields of EBL-
1000 and EBL-2000. It is evident that the flow fields are pop-
ulated by vortical structures typical to wall turbulence. The
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Table 1. Parameters of the EBL cases. The case names are numbered by Reθ of their corresponding TBLs. The last two cases are
labelled by their driving force models (‘KK21’ (Kumar & Krishnan, 2021) and ‘CS16’ (Chen & She, 2016)). The U∞,δ involved in
the parameters (e.g. the Reynolds numbers and domain sizes) are all based on their nominal values. ∆y+e represents the inner-scaled
wall-normal grid interval at the edge (y = δ ) of the boundary layer.

Case name Re Reτ Lx,Ly,Lz Nx,Ny,Nz ∆x+,∆y+min,∆y+e ,∆z+

EBL-1000 7783 359 (8,6,5)δ 385,325,385 7.5, 0.14, 6.6, 4.7

EBL-1420 11168 492 (8,4,4)δ 385,325,385 10.3, 0.10, 9.1, 5.1

EBL-2000 15954 671 (8,4,4)δ 513,433,513 10.5, 0.07, 9.9, 5.2

EBL-1420-KK21 11168 492 (8,4,4)δ 385,325,385 10.3, 0.10, 9.1, 5.1

EBL-1420-CS16 11168 492 (8,4,4)δ 385,325,385 10.3, 0.10, 9.1, 5.1

structures have smaller scales near the wall, and becomes
larger further away from the wall. The vortices show streaky
patterns, and the spanwise scale of these streaks is about one
boundary layer thickness estimated from Figure 2(a). Similar
to that reported by Jiménez et al. (2010), no ordered hairpin
‘forest’ as described by Wu & Moin (2009) can be observed
in the present visualization. This is probably because the fully
developed periodic flow in EBL has lost any transitional effect.
A comparison of Figure 2(a) and (b) shows that more finer-
scaled structures emerge as the Reynolds number gets higher.

The quantitative characteristics of EBL flow fields are
inspected. The first- and second-order statistics of EBL are
shown in Figure 3, and compared with the authentic TBL and
channel flows at similar Reynolds numbers. It is found in Fig-
ure 3(a) that the mean velocity profiles of EBL and TBL agree
well under y+ = 100 scaled by inner units. In the wake re-
gion, the mean velocity of TBL is higher than that of channel.
This is because the high-speed potential flow in the intermit-
tent region injects momentum to the boundary layer (Jiménez
et al., 2010). Though the wake of EBL is also higher than that
of channel, it is lower than that of TBL, leading to a more
distinct discrepancy: the velocity of potential flow in EBL
does not reach that of TBL (U |y�δ = U∞), but stays around
U |y�δ ≈ 0.92U∞. The reason for such a discrepancy is still
not clear, but it is suspected to be the top boundary condition
and the lack of mean wall-normal velocity. The streamwise
fluctuation of TBL does not differ much from that of channel,
but the spanwise and wall-normal fluctuations and Reynolds
shear stress in TBL are significantly higher than that in chan-
nel, as shown in Figure 3(b,d). Note that the Reτ of the channel
flow (CHN-540) shown in Figure 3 is about 50 higher than that
of the TBL (REF-1420), but this is not the reason for the differ-
ences in their statistics. Since the fluctuation intensity of wall
turbulence grows with Reτ increasing, the two kinds of flows
would differ even more if they had the same Reτ . The above
observations are consistent with that by Jiménez et al. (2010).
For statistics which differentiate TBL from channel, our EBL
model manages to give results that are closer to TBL. There-
fore, though periodic open-channel model is used, the driving
force applied succeeds in recovering the characteristics of tur-
bulent fluctuations in authentic TBL.

Pressure and vorticity fluctuations, and high-order statis-
tics of velocity fluctuations, are also checked, as shown in Fig-
ure 4. Pressure fluctuations in TBL are different from that in
channels throughout the boundary layer. Vorticity fluctuations
are also different near the wall. The EBL results are all closer
to TBL for these quantities. Figure 4(c) and (d) show the third-
and forth-order moments of the streamwise fluctuation. Since
the DNS data of channel flows available from literature do not

Figure 3. First- and second-order statistics of EBL. (a) Mean
streamwise velocity profile; (b) Streamwise fluctuation inten-
sity; (c) Reynolds shear stress; (d) Spanwise (upper cluster)
and wall-normal (lower cluster) fluctuation intensities. Black
dashed lines (CHN-540) represent channel flow (Lee & Moser,
2015) at Reτ = 543. Black solid lines (REF-1420) represent
authentic TBL (Schlatter & Örlü, 2010) at Reθ = 1420, i.e.
Reτ = 492. Red and blue lines represent results of the current
simulations.

Figure 4. Fluctuations of pressure and vorticity, and high-
order statistics of the streamwise fluctuation. (a) Pressure fluc-
tuation intensity; (b) Vorticity fluctuation intensity; (c) Third-
order moment of the streamwise fluctuation; (d) Forth-order
moment of the streamwise fluctuation. The legends in panel
(a) have the same meanings to that in Figure 3. The grey band
(CHN-395-590) in panels (c) and (d) represent channel flows
(Moser et al., 1999) within Reτ = 395−590.
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directly correspond to the Reynolds number of EBL, we take
the channel flow statistics within a small range of Reynolds
numbers around the target one. The high-order moments of
streamwise fluctuations are not significantly different for the
channel and TBL, while they are also reasonably captured by
the EBL. These results further confirms that the fluctuations in
authentic TBL can be correctly represented by EBL.

Also demonstrated in Figure 3 is that EBL gives sim-
ilar results using either accurate or modelled driving force.
The models of Kumar & Krishnan (2021) and Chen & She
(2016) perform nearly identically, but the model of Chen &
She (2016) has a simpler form. The model of Kumar &
Krishnan (2021) contains the shape factor H slowly varying
with the Reynolds number. Whether the introduction of such
a term improves the model performance at higher Reynolds
numbers is not clear, but judging from the Reynolds num-
ber range (Reθ < 4000) covered in Figure 1, the Reynolds-
number-independence of driving forces is a fairly good ap-
proximation. Moreover, even if the modelled driving force
differs from the accurate one (see Figure 1(d)), consistent re-
sults can be obtained. This means that EBL is not sensitive
the specific distribution of the driving force, as long as its inte-
gral characteristic, i.e. the total shear stress (especially on the
wall), is correct.

3.2 Simulation of TBL
In order to verify the effectiveness of EBL in generating

inflow boundary conditions, DNS of TBL at various Reynolds
numbers are carried out using auxiliary simulations of EBL to
supply inflow boundary conditions in real time. The governing
equations for the main simulation are the N-S equations non-
dimensionalized by ρ,U∞ and the boundary layer thickness at
the inlet, δin.


∂uuu
∂ t

+uuu ···∇∇∇uuu =−∇∇∇p+
1

Re
∆uuu

∇∇∇ ···uuu = 0
(10)

Periodic boundary conditions are applied to the spanwise
direction, no-slip wall boundary conditions are applied to
the bottom, far-field boundary conditions (u = U∞, ∂v/∂y =
∂w/∂y = 0) are applied to the top, and convective bound-
ary conditions with boundary layer development considered
are applied to the outlet. The inflow boundary conditions are
decomposed into the mean and fluctuation parts. The pre-
scription of the mean velocity at the inlet is less challenging,
and empirical laws or interpolation from existing experimen-
tal/numerical data will suffice (Wu, 2017). The mean stream-
wise and wall-normal velocity used in the present study are
interpolated from DNS data of TBL in the public database
(Schlatter & Örlü, 2010). The velocity fluctuations at the inlet
are extracted from the auxiliary simulation of EBL. The pa-
rameters of TBL cases are summarized in Table 2.

In order to validate the simulation results of TBL, the
streamwise developing statistics are examined. The three TBL
simulation cases cover Reynolds number ranges overlapping
each other, so their statistics varying with Reθ are plotted in
Figure 5. Figure 5(a,b) show the friction coefficients and shape
factors. Their agreement with results in the literature demon-
strates the correctness of the computation. Figure 5(c) com-
pares the variation of Reτ with Reθ with the analytic predic-
tion Reτ = Reθ/3.27 proposed by Chen & She (2016). The
slopes of the present results are very close to 3.27 in the pre-
diction expression, but the intersection shows a bias of 70.

3
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Figure 5. Streamwise developing statistics of TBL. (a) Fric-
tion coefficients; (b) Shape factor H12 = δ ∗/θ ; (c) Friction
Reynolds number; (d) Peak values of velocity fluctuations.

Nevertheless, the prediction expression by Chen & She (2016)
is based on data of a quite large Reynolds numbers range
(Reτ ≈ 300−20000), and when Reτ > 7000, the bias 70 here
leads to a relative error of merely 1%, which is acceptable.
Figure 5(d) shows the peaks of fluctuation intensity of three
velocity components. As the Reynolds number gets higher,
the peaks have lower values and are closer to the wall, scaled
in outer units (δ ,U∞).

Notably, the inflow turbulence generated by the EBL pro-
posed by the present study has excellent performance. The
statistics of each TBL simulation agree well with the reference
data, and follow a natural trend of development from the very
beginning of the streamwise domain. Though minor differ-
ences and jumps are present, they are all within the scatter of
the reference data, especially those DNS data points that are
deemed the most precise among researches on TBL. As men-
tioned in Section 1, the rescaling-recycling based LWS method
commonly set the recycling plane O(10δin) downstream of the
inlet in order to skip the unphysical adjustment region. But the
further the recycling plane is away from the inlet, the longer
the adjustment region will be. Simens et al. (2009) measured
the adjustment region to be 300θin long by the peak values
of fluctuation intensities of three velocity components. In con-
trast, these quantities are plotted in Figure 5(d), and no distinct
adjustment can be observed. In sum, the inflow turbulence
generation by EBL is advantageous in that almost no adjust-
ment region is introduced, and since the computation of EBL
is completely independent of the main simulation, it is not af-
fected by the feedback of the error in the main simulation.

To further validate the simulation results near the inlet of
TBL simulations, particular streamwise locations are exam-
ined. The statistics near the inlets of the three TBL cases are
plotted in Figure 6. Because the streamwise locations are very
near to the inlets, they can be considered to have the same
Reynolds number as the inlets’, that is, Reθ = 1000,1420 and
2000 for the three cases, respectively. As reference, the DNS
results of Schlatter & Örlü (2010) at the same Reynolds num-
bers are plotted in the figure. The mean velocity profiles of
the present simulations are found to agree with the reference
even very close to the inlet, and though some errors exist for
the streamwise fluctuation intensities, they are of fairly small
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Table 2. Parameters of the TBL cases. The case names are numbered by Reθ at the inlet. ∆y+e represents the inner-scaled wall-normal
grid interval at the edge (y = δ ) of the boundary layer.

Case name
Auxiliary
simulation Rein Reθ Reτ

Growth
(δout/δin)

Lx
δin

,
Ly
δin

, Lz
δin

Nx,Ny,Nz
∆x+,∆y+min,∆y+e ,∆z+

(at inlet)

TBL-1000 EBL-1000 7783 1000∼ 1540 359∼ 540 1.61 36,8,5 1945,433,385 6.6, 0.14, 5.1, 4.7

TBL-1420 EBL-1420 11168 1420∼ 2140 492∼ 720 1.56 36,6,4 1945,433,385 9.1, 0.10, 7.3, 5.1

TBL-2000 EBL-2000 15954 2000∼ 2940 671∼ 960 1.52 36,6,4 2305,513,513 10.5, 0.07, 9.0, 5.2

Figure 6. Statistics near the inlets of the present TBL sim-
ulation cases. (a,d) Case TBL-1000; (b,e) Case TBL-1420;
(c,f) Case TBL-2000. (a-c) Mean streamwise velocity pro-
files; (d-f) Streamwise fluctuations. The red lines are results at
x/δin = 1,2 and 4 of each case of the present simulations, and
the black and grey lines are DNS results as reference for the in-
let (x = 0) of each case. Black lines (Ref.S) are from Schlatter
& Örlü (2010), and grey lines (Ref.J) are from Jiménez et al.
(2010).

magnitude. The DNS results of Jiménez et al. (2010) using the
LWS method are also shown in Figure 6. Note that Reynolds
number Reθ = 1000 for the statistics shown in Figure 6(a,d)
actually falls out of the useful range (Reθ = 1100− 2050)
claimed in their paper. Therefore, evident errors between their
results and that of Schlatter & Örlü (2010) are observed in Fig-
ure 6(a,d). Such errors are just a downstream effect of the er-
rors in the inflow boundary condition (at Reθ = 620) generated
using the LWS method. In contrast, the inflow turbulence gen-
erated using the present EBL are quite accurate at the inlet,
hence leading to correct results even close downstream. Judg-
ing from the mean velocity, the adjustment region induced by
our inflow boundary condition is less than 1δin, if exists at all.

4 Concluding remarks
The present study proposes a new method to generate

TBL-type inflow turbulence, namely the EBL. It is based on
the open-channel model, applying driving force to recover the
mean momentum balance in TBL, and thus fixes the error in
approximating TBL by open-channel. EBL is homogeneous in
the streamwise direction, so the periodic boundary condition
can be applied, overcoming the complexity and arbitrariness
of the LWS method.
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