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ABSTRACT
The Kolmogorov constant is a prefactor used to correlate

the spectral distribution of turbulent kinetic energy with the
turbulent dissipation rate. The Kolmogorov constant has been
used in stochastic turbulence models and turbulence models
based on large-scale turbulent structures, like the Smagorinsky
model and other eddy viscosity-based models used in large-
eddy simulations (LES). Many research works have been per-
formed to estimate the Kolmogorov constant for a wide range
of turbulent flows like homogeneous isotropic turbulence, tur-
bulent boundary layers, etc. In earlier work, Sreenivasan
(1995) has consolidated and analyzed a large number of ex-
perimental data and concluded that at high Reynolds numbers,
the prefactor is a universal constant.

In the present work, we have estimated the Kolmogorov
constant for particle-laden turbulent channel flow using
second-order velocity structure-function based analysis. Our
study reveals that, with an increase in particle volume fraction
Kolmogorov constant decreases. The present analysis on the
variation of Kolmogorov constant with particle volume load-
ing will be helpful to model the two-phase turbulent flows.

INTRODUCTION
The Kolmogorov constant is the proportionality prefactor

in Kolmogorov theory which states that the spectral energy in
the inertial subrange is E(k)=Cε2/3k−5/3 where ε is the mean
viscous dissipation rate of turbulence kinetic energy and k the
wavenumber. The Kolmogorov constant is obtained based
upon the Kolmogorov hypothesis for different flows such as
boundary layers, channel flows, etc. In the seminal work,
Sreenivasan (1995) has summarized that the Kolmogorov con-
stant is universal and, independent of the flow configuration
and Reynolds number. At sufficiently high Reynolds num-
ber where isotropy is satisfied at dissipation scale and inertial
range, and will lead to a constant Kolmogorov prefactor. How-
ever, at moderate and low Reynolds numbers, the Kolmogorov
constant may differ from a universal value. Antonia et al.
(1997) performed experiments for channel flow and observed
a lower value of Kolmogorov constant. They analyzed the

second and third-order velocity structure-function and men-
tioned that small-scale isotropy should be satisfied for the ex-
istence of a universal inertial range. Heinz (2002) discussed
the variations of Kolmogorov constant for equilibrium turbu-
lent boundary layer and homogeneous isotropic stationary tur-
bulence, and mentioned that the value is near two if anisotropy
and acceleration fluctuations dominate in the energy budget.
And, the value is near six if these contributions disappear. Ye-
ung & Zhou (1997) mentioned that for the existence of iner-
tial range, isotropy should also be present along with −5/3
scaling. If isotropy is not satisfied, the Kolmogorov constant
may achieve a different value. The above studies point out
the deviation of Kolmogorov constant from universality due to
anisotropy at low and moderate Reynolds numbers for unladen
cases. In turbulent flows, the local isotropy can be affected by
the presence of particles as well. It is evident that particles
can affect the turbulence intensity of the gas phase. In the
study by Gualtieri et al. (2013) for particle-laden shear flow,
they concluded that care should be taken while applying Kol-
mogorov theory as anisotropy is increased for particle-laden
cases. Thus, in the present study, we want to explore whether
particles can induce anisotropy in the gas phase. And, what is
the effect of increased anisotropy on the Kolmogorov theory?

To answer the above question, simulations are performed
for turbulent channel flows with direct numerical simulations
(DNS) at Reynolds number of 5600 based on average gas ve-
locity and channel width. It is observed that the turbulence in-
tensity of the gas phase decreases with an increase in particle
loading, along with the increase in anisotropy across the chan-
nel width. The increase in anisotropy affects the Kolmogorov
constant, which is discussed in the results section.

SIMULATION PARAMETERS
The fluid phase has been considered to be incompressible

and described by Navier-Stokes equation. The discrete smooth
point particles are simulated using Newton’s second law of
the motion. The simulations have been performed in a ver-
tical channel domain with 8πδ ∗ 2δ ∗ (4/3)πδ in streamwise
(x), wall-normal (y) and spanwise (z) directions, respectively.
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Where δ is half channel width. No-slip boundary conditions
are applied on the walls in the y-direction. The bulk Reynolds
numbers (Reb = ρ f ∗ ū∗2δ/µ f ) is fixed at 5600 based on the
channel width (2δ ) and average fluid velocity (u) which cor-
responds to Reτ = 180 based on the unladen frictional veloc-
ity and half-channel width. The detail simulation procedure
for calculation of feedback force, near wall corrections in lift
and drag, corrections for undisturbed velocity at particle loca-
tions are discussed in our earlier work (Muramulla et al. (2020)
Goswami & Kumaran (2011)). The particles with Stokes num-
bers (St = τp/τ f ) of 105.47 and 210.93 are simulated where
τp = ρpd2

p/18µ f , τ f = 2δ/u, ρp is the particle density, dp is
the particle diameter and µ f is the fluid dynamic viscosity.

RESULTS
The anisotropy of small scales across the channel width

can be accounted from the ratio of Kolmogorov time scale to
mean shear time scale (Antonia & Kim (1992); Saddoughi &
Veeravalli (1994))

S∗c = S(ν/ε)1/2 (1)

where S is the mean shear, dU/dy. Antonia & Kim (1992)
did the DNS for channel flow and found a value of S∗c = 2.5
at the wall and reduction to low value for y+ > 60 (y+ is the
wall-normal distance normalized with viscous units). The S∗c
is plotted along the wall-normal direction for St = 210.47 for
different volume fractions (φ ), Fig. 1. It is found that the S∗c is
2.42 at the wall for the unladen case. A decrease in the S∗c is ob-
served away from the wall. The S∗c increases across the chan-
nel as the particle volume loading is increased, suggesting an
increase in anisotropy of small scales for particle-laden cases.
The S∗c at the wall for φ = 0.0025 becomes almost 50% higher
than the unladen case. The turbulence collapse is observed
at φ = 0.0028 (Rohilla et al. (2022); Kumaran et al. (2020)).
This increased anisotropy can affect the Kolmogorov constant
for particle-laden cases which is analyzed via a second-order
velocity structure-function.
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Figure 1: The ratio of Kolmogorov time scale to mean
shear time scale for different volume fractions at St =
210.93.

The Kolmogorov constant (C2) can be calculated us-
ing the second-order velocity structure-function (Kolmogorov

(1941)) defined as ,

〈(δu)2〉=C2(εr)2/3, (2)

where r ( in the inertial range, η << r << L) being the
distance between the two points, η is the Kolmogorov length
scale, L is the integral length scale, ε is the mean viscous dis-
sipation rate and, δu = u(x+ r)− u(x), with u being the lon-
gitudnal fluctuations. The Kolmogorov constant is defined by
C2 and angular brackets denote the time averaging.
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Figure 2: The second-order velocity structure-functions
multiplied with r∗−2/3 for unladen cases. The dashed
line is plotted at 1.2.

The second-order velocity structure-function for unladen
case is plotted in Fig. 2 using the Eqn. 2. The (∗) denotes the
normalization with Kolmogorov scales. The profiles are plot-
ted for two locations, one in the near-wall region (y+ ∼ 15)
and the other at the channel center (y+ ∼ 180), and validated
against the experimental data of Antonia et al. (1997). There
is a good agreement between the experimental data of Antonia
et al. (1997) and the present DNS results for both the channel
locations. The majority of the reported values of C2 in the lit-
erature are around 2 or more (Heinz (2002); Choi et al. (2004);
Sawford & Yeung (2011); Saddoughi & Veeravalli (1994);
Sreenivasan (1995)). However, a value of C2 can be lower than
two due to lower Reynolds number or if there is a deviation of
isotropy in dissipation and inertial-range (Sreenivasan (1995);
Antonia et al. (1997); Yeung & Zhou (1997)).

In Fig. 3, the second-order velocity structure-function is
shown for different particle volume loadings for Reynolds
number of 5600 in the channel center location. There is
a decrease observed in the value of second-order velocity
structure-function at all the r∗ locations with an increase in
volume fraction. The peak value decreases nearly to 0.4 for
φ = 0.0025 from 1.2 for unladen flow. The decrease observed
in the value of second-order velocity structure-function, Fig. 3,
is due to an increase in anisotropy across the channel, as shown
in Fig. 1.

In Fig. 4, the peak value of the second-order velocity
structure-function is plotted for two channel locations, one in
the near-wall and the other at the channel center. It is seen
that the Kolmogorov constant (C2) decreases significantly with
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Figure 3: The second-order velocity structure-functions
multiplied with r∗−2/3 for different volume fractions at
channel center location (y+ = 180) with St = 210.93.
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Figure 4: The peak of second-order velocity structure-
function plotted for different volume fractions. The
dashed lines are the fitting curves.

increase in volume loading. The C2 value is not relevant at
volume loading of φ = 0.0028 and 0.003 for St = 210.93 and
105.47 respectively as turbulence has collapsed at these vol-
ume loadings (Rohilla et al. (2022); Kumaran et al. (2020)).
Also, it is observed that the C2 increases from near-wall region
to the channel center for unldaden case (Antonia et al. (1997);
Choi et al. (2004)). However, the decrease in the peak value of
C2 is more for the channel center location than the near-wall
region with an increase in volume loading. It is interesting to
note that a crossover occurs as the volume loading is increased
and the peak value of C2 becomes less in the channel center
than the near-wall region for both the Stokes numbers. It is
also observed that this crossover occurs at low volume loading
for low Stokes number, Fig. 4.

In Fig. 5, the ratio of streamwise root mean square (rms)
fluctuations to the Kolmogorov velocity scale (uk) is plotted
for St = 210.93. It is observed that the ratio decreases faster in
the channel center than in the near-wall region with increased
particle volume loading. This shows that the separation of ve-
locity scales (large to small-scales) decreases more in the chan-
nel center than in the near-wall region. This explains the larger
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Figure 5: The ratio of streamwise root mean square fluc-
tuations (u′x) and Kolmogorov velocity scale (η) plotted
in the wall-normal direction for a range of volume frac-
tions for St = 210.93.

decrease of the Kolmogorov constant in the channel center re-
gion.

SUMMARY
We report that the Kolmogorov constant decreases with

an increase in volume loading at moderate Reynolds number
due to an increase in anisotropy. In the case of unladen wall-
bounded flows, the Kolmogorov constant increases away from
the wall. However, it is observed in the present study that the
Kolmogorov constant in channel center location is less than
the near-wall region for higher volume loadings. The demon-
strated variation in the Kolmogorov constant will be helpful to
develop better turbulence models in stochastic modeling and
LES for particle-laden flows.
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