
12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan, July 19–22, 2022

A STUDY ON SPATIAL ORGANIZATION OF COHERENT STRUCTURES IN
CHANNEL FLOW USING UNSUPERVISED DEEP LEARNING

Mohammad Javad Sayyari
School of Mechanical Engineering

Pusan National University
Busan 46241, Republic of Korea

sayyari@pusan.ac.kr

Jinyul Hwang
School of Mechanical Engineering

Pusan National University
Busan 46241, Republic of Korea

jhwang@pusan.ac.kr

Kyung Chun Kim
School of Mechanical Engineering

Pusan National University
Busan 46241, Republic of Korea

kckim@pusan.ac.kr

ABSTRACT
This study aims to evaluate the capability of a GAN-based

unsupervised deep learning network for generating inflow tur-
bulent fields in a channel with the focus on the spatial organi-
zation of the coherent structures. For this purpose, a DNS is
conducted at Reτ ≈ 178 to collect the training dataset at the
cross-stream plane of the channel at a fixed streamwise loca-
tion. First, it is shown that the one-point and two-point turbu-
lence statistics are well matched between the DNS and GAN
data. Then, we extracted intense streamwise velocity clus-
ters from the generated flow fields and compared them with
those of the DNS in terms of their size distribution. More-
over, the two-point correlation coefficients computed from our
GAN data are compared with those of the DNS data. Interest-
ingly, the GAN successfully predicts the structural character-
istics hidden in the training data such as the relation between
the height and width of the identified clusters for negative,
positive, and superposed clusters, the mean spanwise distance
between the low-speed streaks, and the wall-normal variation
of the conditional and unconditional length-scales in the wall-
normal and spanwise directions. The successful performance
of the network in this study suggests its potential to be utilized
more in turbulence researches.

Introduction
As coherent structures play a critical role for under-

standing and controlling turbulent flows, a proposed method
for predicting turbulent flow fields should be able to cap-
ture them accurately. In this regard, the direct numerical
simulation (DNS) has shown promising results (Jiménez &
Moin, 1991). However, the DNS is time-consuming espe-
cially at high Reynolds numbers. Alternatively, the compu-
tational costs of DNS related to a required large computa-
tional domain at high Reynolds numbers can be decreased by
an accurate inflow turbulence generation method. To generate
the inlet boundary condition, several methods are summarized
by Wu (2017). Recently, Kim & Lee (2020) pointed out the
disadvantages of these methods, suggesting machine learning
(ML) techniques as an alternative. In this regard, supervised

(Fukami et al., 2019) and unsupervised (Kim & Lee, 2020)
deep learning (DL) are applied to generate inflow for fully
developed turbulent channel flows. These studies along with
others have shown that the ML techniques have the potential
to learn the underlying physics of turbulent flows. However,
the ability of these methods for prediction of coherent struc-
tures has not been well examined yet. This study assesses the
capability of an unsupervised DL technique for predicting the
turbulence statistics as well as the spatial features of coherent
structures in a fully developed turbulent channel flow. For this
purpose, the training dataset is provided from a DNS of the
channel flow at Reτ ≈ 178. Then, the training dataset is fed
to an unsupervised DL network based on the generative adver-
sarial network (GAN) to generate instantaneous flow fields.
Finally, the generated flow fields are compared to those of
DNS in terms of the turbulence statistics and coherent struc-
tures with the focus on the two-point correlation. The results
infer the potential of the unsupervised learning of turbulence
to be enhanced further and become a powerful tool in the tur-
bulence researches. As the shape and behavior of the coher-
ent structures are mainly preserved when they grow and travel
in the streamwise direction in a boundary layer flow (Robin-
son 1991; Adrian et al. 2000), a DL network can be trained
at a low Reynolds number and be asked to generate instanta-
neous inflow boundary conditions at a high Reynolds number
in a turbulent boundary layer to reduce the computational costs
of DNS related to the required large computational domain at
high Reynolds numbers. Recently, Kim & Lee (2020) showed
successful application of a deep unsupervised network to pre-
dict turbulent flow fields in a channel flow at a higher Reynolds
number (Reτ = 720) than the training dataset, but their study
is limited to the one-point and two-point turbulence statistics
without structural analysis.

Computational setup
DNS

To collect the training dataset, a DNS of fully-developed
turbulent channel flow is performed using a fractional step
method (see Kim et al. 2002). The periodic boundary con-
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dition is applied in the streamwise (x) and spanwise (z) direc-
tions while the no-slip boundary condition is imposed on the
walls. Also, the mesh is non-uniform in the wall-normal di-
rection (y). Table 1 provides the parameters of the DNS data.
Here, h denotes the channel half-height. Throughout this pa-
per, U , V , and W indicate the streamwise, wall-normal and
spanwise velolcity components. The corresponding velocity
fluctuations are u, v, and w, respectively. The superscript +
denotes the inner unit normalized by the friction velocity and
the viscous length scales. The angled brackets <> indicate the
ensemble average.

Table 1: Parameters of the DNS data

Reτ (Lx/h,Lz/h) (Ny,Nz) ∆y+min ∆y+max ∆z+ ∆t+

178 (4π ,2π) (192,256) 0.11 4.87 4.37 0.075

We used a total of 20,000 y–z planes from the DNS data
at a fixed streamwise location and resized them to have a res-
olution of 192× 192. Then, they are divided into a number
of batches, having batch size of BS, and used as the training
dataset, or real images.

Deep unsupervised learning network
The original GAN, first introduced by Goodfellow et al.

(2014), consists of two main networks; namely, Generator (G)
and Discriminator (D). The generator takes a random noise
vector (~Z) in the latent space, having dimension of LS, and
produces a fake image. Then, the fake and real images are
fed to the discriminator which gives a number that determines
the similarity between the two images (see Fig.1). The GAN
network can be formulated as (Goodfellow et al. 2014):

min
θG

max
θD

EX
[
log
(
DθD (X)

)]
+E−→Z

[
log
(

1−DθD

(
GθG

(−→
Z
)))]
(1)

where E denotes the expectation, and X , θG, and θD are the
real image, trainable parameters of G, and trainable parameters
of D, respectively. The real image is a three-channel image that
includes the U+, V+, and W+ information.

Gulrajani et al. (2017) suggested WGAN-GP which mod-
ifies the loss function of D as Eq.2:

LD =EX [−D(X)]+EX̃

[
D
(

X̃
)]

+λDEX̂

[(∥∥∇X̂ D
(
X̂
)∥∥

2−1
)2
]

(2)
where ||.||2 denotes the Euclidean norm, X̃ =G(

−→
Z ) is the gen-

erated fake image, and X̂ = σX + (1−σ)X̃ with σ being a
random number. In this study, the WGAN-GP is implemented
with the techniques proposed by Karras et al. (2017) such as
pixelwise normalization (pn). The loss function of the genera-
tor is also constrained as Eq.3(Wu et al. (2020)):

LG,new = LG +λG||S(X)−S(X̃)||22 (3)

where S, LG and λG are the energy spectra, the loss function
of the original GAN and the strength of the constraint, respec-
tively. The statistical constraint term converges to a low value
after enough number of epochs (EP). Hereafter, we call the
DL network used in this study as GAN for simplicity.

As seen in Fig.1, the generator and discriminator are both
networks which contain blocks of mainly convolution (conv)
and fully connected (fc) layers. The network utilizes the
Leaky-ReLU function with parameter a, and the ADAM op-
timizer with learning rate of lr. Additionally, the number of
real images is increased at each iteration by mirror and spec-
tral augmentations. The fixed parameters for the network are

given in Table 2 if not mentioned. See Kim & Lee (2020) for
more details about the DL network.
Table 2: Hyperparameters of the network (KS is the ker-
nel size)

λD λG a BS lr EP KS LS

100 1e-3 0.2 4 1e-3 120 3 256

Identification of the coherent structures
In this study, the coherent structures are defined as the

connected points in a given instantaneous flow field that have
streamwise velocities less or larger than a specific value. The
connectivity rule is defined as the four orthogonal neighbors
of each node in Cartesian coordinates. Thus, the positive and
negative coherent structures (clusters) are defined as (Hwang
& Sung 2018; Lozano-Duran & Jiménez 2014):

Positive clusters: u > αurms

Negative clusters: u <−αurms
(4)

Based on percolation analysis, we found α = 1 for both
the DNS and GAN data. Although not shown here, the GAN
and DNS results are well matched in the vicinity of the chosen
threshold value. This is consistent with the work of Schmekel
et al. (2022) who showed that the number and volume of clus-
ters connected with the Reynolds stresses are preserved by a
DL convolutional neural network. It should be mentioned that
the clusters having area of less than (30)2 in wall units are
filtered out in this study.

Results and discussion
Instantaneous flow fields

A sample of the generated instantaneous velocity fields
in the cross-stream plane is displayed in Fig.2. As illus-
trated, the spatial velocity fields are similar to the flow fields
of DNS qualitatively, showing that the network is capable
of emulating the training dataset. We examine these spatial
fields statistically in terms of their structural characteristics.
Fig.3 shows the joint probability density function (JPDF) of
height and width of the identified structures in the instanta-
neous flow fields. Based on the physical geometry of the struc-
tures, their height and width are defined as ly = ymax − ymin
and lz = zmax− zmin, respectively. Here, ymin and ymax are the
minimum and maximum wall-normal locations while zmin and
zmax denote the minimum and maximum spanwise locations
of a given structure, respectively. As seen, the identified struc-
tures are widely distributed with different sizes. As shown, the
GAN lines follow the same pattern as the DNS contour levels.
This agreement is also held when the structures are divided to
the positive and negative clusters based on Eq.4 (see Fig.3(b)
and 3(c)). This figure shows that the size and the relation be-
tween the height and width of the identified structures in the
instantaneous flow fields are well learned by GAN.

Turbulence statistics
To validate our GAN results, one-point and two-point

turbulence statistics obtained from the generated flow fields
are compared with those of DNS. The mean statistics are
ensemble-averaged over 10,000 generated fields whereas those
of DNS are averaged over the whole training dataset.

Fig.4(a) compares the mean streamwise velocity, non-
dimensionalized by the friction velocity, for the current results
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Figure 1: The GAN model used in this study with the detailed architectures of the generator (G) and discriminator (D).
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Figure 2: A sample of the generated velocity fields using the current GAN compared with DNS at Reτ ≈ 178.
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Figure 3: JPDF of height and width of a) all the identified clusters b) positive clusters, and c) negative clusters. The gray
contour shows the DNS data while the red line indicates the GAN data. The contour levels are logarithmically distributed.

and DNS along the outer coordinates. As seen, except for the
small differences mainly in the core region, where GAN pre-
dicts slightly higher values, very good agreement is obtained
for the mean streamwise velocity profile. Also, as shown in
Fig.4(b), the turbulent intensity profiles (i.e. u+2

i,rms(y) , where i
denotes the streamwise (i = 1), wall-normal (i = 2) and the
spanwise (i = 3) directions) are in a good agreement when
compared with those of DNS. However, GAN shows slightly
lower turbulence intensities for the near-wall peaks. As seen in

this figure, the GAN predicts lower values for the v and w com-
ponents at all wall-normal locations which can be attributed to
the problem that the mean profiles of these velocity fluctua-
tions show higher alternations around zero compared to those
of DNS (not shown here). The same issue can be seen in the
results of Fukami et al. (2019), which is related to a lack of
zero-mean constraint in the network.

Fig.4(c) demonstrates premultiplied one-dimensional
spanwise spectra of the velocity fluctuations (Φu+i u+i

=
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kzSu+i u+i
) at two wall-normal locations; y/δ = 0.08 and 0.3,

with kz = 2π/λz being the spanwise wavenumber correspond-
ing to the spanwise wavelength λz. In the near-wall region, the
energy carried by large scales, which represent the superim-
posed large scales (or footprint), are well captured, and the pre-
multiplied energy spectra for the near-wall and outer regions
follow the same trend over a wide range of scales when com-
pared with the DNS data. More importantly, the location of the
peaks are very well captured in this figure, which shows that
the GAN is capable of predicting the spanwise length-scale of
the most energetic motions at a given wall-normal location.
This result implies that the spatial organizations of near-wall
streaks as well as outer large-scale structures are well predicted
in the generated flow fields. However, the peak values pre-
dicted by GAN are lower than those of DNS, especially for the
streamwise velocity.

To further explore the spatial organization of coherent
structures, the two-dimensional two-point correlation coeffi-
cients of the velocity fluctuations having spanwise distance of
∆z are calculated as Eq.5:

Ru+i u+i
(y,∆z) =

< u+i (y,z, t)u
+
i (yre f ,z+∆z, t)>

u+i,rms(y)u
+
i,rms(yre f )

(5)

where yre f indicates the reference height. First, we sim-
plify Eq.5 by focusing on the one-dimensional correlations at
y = yre f . Fig.4(d) shows the one-dimensional two-point cor-
relation coefficients at two reference heights. As seen, the dis-
tant points are correctly uncorrelated in both DNS and GAN.
As the reference height is increased from the near-wall to the
logarithmic layer, the separation distance between the anti-
correlated regions increases, indicating that the average span-
wise length-scale of the structures are growing with height.
This is in agreement with other studies including Lee & Sung
(2013) and Monty et al. (2007). This behavior is discussed
more in the next section. More importantly, the location of
the minimum two-point correlation coefficient for the stream-
wise velocity in the logarithmic region, which gives an esti-
mate of the mean spanwise distance between the low-speed
streaks, is in good agreement with that of DNS for both wall-
normal locations. As observed, the minimum location for the
correlations of the spanwise and wall-normal velocity compo-
nents are also in excellent agreement with DNS. These obser-
vations suggest the potential of the DL network to learn some
underlying physics hidden in the turbulent flow fields such as
the mean spanwise spacing between the low-speed streaks.
At y/h = 0.3, in particular, the positive correlations for the
streamwise velocity with spanwise separation of ∆z/h ≈ 0.5
are centered at the reference position and are flanked both sides
by negative values with a distance of approximately h (see in-
set (b) of Fig.4(d)). This reveals that the spatial organization of
the large-scale structures in the predicted flow fields are well
captured at this specific height.

Wall-normal variation of the two-point correla-
tion coefficient

To discuss the wall-normal variation of the two-point cor-
relation coefficients, we track the integral length-scales at dif-
ferent reference heights. The integral length-scales are defined
as Eq.6:

Γi, j =
∫ b

a
Ru+i u+i

(y,∆z)dr j (6)

where the wall-normal and spanwise directions of integration
correspond to j = 1 and j = 2, respectively, so that r1 = y
and r2 = ∆z. The integration is performed on the lines pass-
ing through the reference point (y = yre f or ∆z = 0) limited

to within the zone where the correlation curve intersects with
Ru+i u+i

= 0.05 (Sillero et al. 2014) (see inset (a) of Fig.4(d)).
The first and second intersection points are shown with a and
b, respectively. The integral length-scales are computed only
for the lower half of the channel, due to the wall-normal sym-
metry of this figure with respect to the channel centerline, as
the plots at the left-hand side of Fig.5(a). This figure clearly
admits that the wall-normal ( j = 1) and spanwise ( j = 2) inte-
gral length-scales obtained from the GAN data follow the same
trend as the DNS data for all the velocity perturbations. In par-
ticular, the spanwise integral length-scales for all the velocity
components increase through out the boundary layer thickness,
while the wall-normal integral length-scale of the streamwise
velocity increases sharper near the wall and decreases near the
center of the channel, which is in agreement with other studies
(Monty et al., 2007; Sillero et al., 2014). This means that the
coherent structures are persisted well even beyond the logarith-
mic layer in the channel flow (Lee & Sung, 2013), and the suc-
cess of GAN to predict their length-scales provides evidence
that this unique characteristic is reflected in the generated flow
fields. However, the length-scales are underestimated by GAN
compared to the DNS values. To explore the GAN capabil-
ity for learning the length-scales of specific events, we fur-
ther compute the length-scales based on the correlations con-
ditioned on the negative and positive clusters.

The conditional two-point correlation coefficients are de-
fined as Eq.7 (Sillero et al., 2014):

Ru+i u+i ,C
(y,∆z) =

< u+i (y,z, t)u
+
i (yre f ,z+∆z, t)> |C

u+i,rms(y)u
+
i,rms(yre f )|C

(7)

where the subscript C defines the condition being considered;
that is, C = P and C = N mean conditioned on the positive and
negative clusters formulated in Eq.4, respectively. Here, we
only constrained the reference point to be within the identified
clusters whereas the moving point is freely positioned on any
node in the computational domain. Note that at y = yre f and

∆z = 0, the conditional correlation gives Ru+i u+i ,C
=

u+i,rms(yre f )|C
u+i,rms(yre f )

while the unconditional one reaches Ru+i u+i
= 1 (see Fig.5(b)).

The length-scale of the conditional correlation is defined as the
distance between the two intersection points of the correlation
curve and the line Ru+i u+i ,C

= 0.3 (Lee & Sung, 2013; Sillero
et al., 2014). The wall-normal and spanwise length-scales of
the conditional correlation for the streamwise velocity com-
ponent (i = 1) are shown at right-hand side of Fig.5(a) as a
function of yre f /h. Although not shown here, this figure also
has an almost symmetric behavior with respect to the center-
line of the channel, and thus is only plotted for the upper half
of the channel. Surprisingly, trends of the GAN results for the
positive and negative clusters are in a good agreement when
compared to those of the DNS. However, the lengths obtained
from the GAN data are shorter, especially for the wall-normal
length-scale near the channel center. Fig.5(a) confirms that the
GAN not only learns the characteristic length-scales of the su-
perposed structures at different wall-normal locations, but also
preserves the length-scales of their constitutive events such as
the positive and negative clusters in a deeper level. Similar to
our results, Lee & Sung (2013) reported the same conditional
analysis for the streamwise two-point correlation and showed
that the spanwise length-scales for the positive and negative
events increases from near the wall to y/δ = 0.5 and 0.6, re-
spectively, where δ is the boundary layer thickness in their
study, beyond which the curves start to decay. These locations
are in excellent agreement with our GAN and DNS results.

Note that the streamwise turbulent intensities averaged
separately over the positive and negative structures are in a
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very good agreement with the DNS results as given in Fig.5(b).
This figure reveals that the turbulence intensities carried by
the negative clusters are higher than those of the positive clus-
ters which in turn are higher than the unconditional intensities
in a large portion of the channel height. Also, the near-wall
peak locations of the negative clusters, accurately predicted by
GAN, occur at a larger distance from the wall compared to the
other two curves.

A better understanding of the correlations dimensions can
be achieved by Fig.6 which shows the 2D shape of the corre-
lations at different wall-normal locations, covering from near
the wall to the logarithmic and outer regions. The thick lines
in this figure indicate the DNS data while the GAN results
are shown with the thin lines. As depicted in Figs.6(a–c),
the size of the objects for the three velocity fluctuations in-
creases with the wall-normal location. In addition, the objects
of u, v, and w fluctuations get closer to circular, elliptical, and
squarish shape, respectively, as they move away from the wall,

which is in agreement with the integral length-scales presented
in Fig.5(a). Also, the distance between the anti-correlated re-
gions (dashed lines) increases with the wall distance. These re-
gions are located symmetrically at the left and right sides of the
u and v correlations whereas the negative lobes of the w com-
ponent are positioned above and below the reference point,
suggesting the existence of a quasi-streamwise roll mode. In
all cases, these regions disappear completely from the span-
wise direction in the DNS data away from the wall. The find-
ings discussed above are in agreement with the cross-stream
analysis of Sillero et al. (2014) for a channel flow. Interest-
ingly, these features are well preserved in the results obtained
from the generated flow fields for a large portion of the flow
thickness as shown with the thin lines in Fig.6. The GAN data
shows almost identical correlation maps for the transversal ve-
locities at all wall-normal locations as presented in Fig.6(b)
and 6(c). While the correlations of the u fluctuations show
similar patterns near the wall between the GAN and DNS data,
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symmetry.

they deviate near the edge of the boundary layer. In fact, the
fluctuations surrounding the reference point in the GAN data
maintain their coherence in a larger wavy pattern compared to
that of the DNS with some negatively correlated regions which
are not seen in the DNS correlation. As discussed by Sillero
et al. (2014), flux of the velocity covariance in the plane nor-
mal to the velocity component is equal to zero theoretically. In
our study, this integral is roughly of order 10−6 and 10−2 for
the DNS and GAN data shown in Fig.6(a), respectively. As
a result, the positive and negative correlations are strictly dis-
tributed differently in the DNS and GAN data, but as shown in
this study, the important characteristics are still present in the
GAN data.

Summary and conclusions
In this study, we successfully trained a GAN-based net-

work with the cross-stream DNS data of a turbulent channel
flow to generate similar flow fields that resemble those of the
DNS both qualitatively and quantitatively. In particular, our re-
sults reveal that not only the flow field patterns, one-point and
two-point statistics are quite matched between the DNS and
GAN data, but also the intense velocity coherent structures ob-
tained from the generated flow fields follow the same behavior
as the DNS results in terms of the relation between their height
and width. Comparing the two-point correlation coefficients
for the DNS and GAN data in the cross-stream plane, it turned
out that the wall-normal variation of the length-scales obtained
from the conditional and unconditional correlations are well
reflected in the GAN data. Overall, a satisfactory agreement is
obtained between the DNS and GAN flow fields in this study,
with a general underprediction in the GAN results. The evi-
dences gathered in this study clearly show the potential of the
unsupervised deep learning network to learn structural features
hidden in the training dataset.
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