
12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12) 
Osaka, Japan (Online), July 19-22, 2022 

 

1 

 

I UNSTABLE NATURAL CONVECTION IN A VERTICAL CHANNEL WITH HOT-COLD 
WALL CONFIGURATION 

 

 

ChungGang Li 
Department of Computational Science 

Kobe University 
1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan 

cgli@aquamarine.kobe-u.ac.jp 
 

 

Makoto Tsubokura 
Department of Computational Science 

Kobe University 
1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan 

tsubo@tiger.kobe-u.ac.jp 
 

 

 

 
ABSTRACT 

The unstable phenomena induced by the natural convection 

in an open-ended vertical channel with a hot-cold wall 

configuration are investigated. The compressible solver 

combining absorbing and non-reflecting boundary conditions 

for extremely low Mach numbers is applied to eliminate the 

problem of requiring a priori knowledge of the flow rate. It is 

found that the existing empirical experience for the natural 

convection in a vertical channel cannot be applied to the 

current configuration. In order to better reflect the underlying 

physics, the turbulent behavior near the wall is investigated and 

the result shows that Grossmann-Lohse (GL) theory, originally 

proposed of horizontal (Rayleigh-Benard) convection, can be 

applied to describe the current flow behavior. From the 

correlation between the Rayleigh number and Nusselt number, 

it can be estimated that this kind of unstable phenomenon can 

enhance the heat transfer by around 10%. 

 

 

Introduction 

The natural convection in a vertical channel with hot-cold 

walls is very common to see in our daily life such as a wall-

mounted-panel heater. Differently from one of the most well-

known cases, the natural convection in an enclosure, how to 

well conditionally assign the boundary condition at inlet and 

outlet is a challenging topic. Especially, due to the different 

direction of the buoyancy force in a hot-cold wall configuration, 

the opposite velocities located on the same boundary for both 

upper and lower apertures in the channel increases the 

difficulty of performing the simulation. Besides the issue of the 

boundary condition, to the authors’ best knowledge, the current 

configuration has not been numerically studied before, so how 

to appropriately analyze the results and describe the flow 

characteristics using the known flow patterns to understand the 

new physical insights should be also taken into consideration.  

Therefore, this study aims to investigate the unstable 

phenomena induced by the natural convection in a vertical 

channel with asymmetric hot-cold walls at moderate Rayleigh 

numbers from 5.2×105 to 7.6×106. To the authors’ best 

knowledge, the physical model proposed here has not been 

studied yet due to the opposite directions of the velocity at the 

same boundary condition. To overcome this problem, the non-

reflecting boundary condition with the absorbing boundary 

condition developed in [1] is applied to the current physical 

model. Besides, the unstable phenomena near the wall generate 

small flow structures, which is different from past cognitions 

about the flow pattern at the same Rayleigh number. To study 

the scale of the fluid property, following Ng et al. [2], the GL 

theory, originally proposed for the horizontal convection, is 

applied to investigate the flow and temperature fields to better 

understand the physics. Moreover, to further understand the 

mechanism of unstable phenomena, the effect of the Rayleigh 

number on the heat transfer is also investigated. From the result, 

it can be known that, even at a low Rayleigh number, once the 

interaction between hot and cold walls is strong enough, 

instead of the laminar flow field, the similar Rayleigh-Benard 

convection is shown and this kind of convection can enhance 

the heat transfer. 

 

 
Physical model and Governing Euqation 

The open-ended finite length channel with extra regions is 

shown in Fig. 1. The streamwise, vertical and spanwise 

directions are denoted x1, x2 and x3, and their corresponding 

velocities are u1, u2 and u3, respectively. Gravity is in the 

negative x1 direction. For simplicity, only the x1 x2 plane is 

shown here as the boundary condition in the spanwise direction, 

x3, is periodic. The channel has width l2 and the origin is at 

point c. The whole computational domain can be separated to 

three parts, the real physical domain abdc, the lower artificial 

buffer zone a0b0ba, and the upper artificial buffer zone cdd0c0. 

The related parameters used in this study are listed in Table 1. 

 The real physical domain abdc consists of the heat wall 

ac with an isothermal condition Th and the cold wall bd with an 

isothermal condition Tc. The governing equations here are the 

original Navier–Stokes equations, 
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where  / / 2 / 3( )
ij j i j i ij

A u x u x u        i  and the ideal gas 

equation is written as p RT  
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Figure 1. Physical Model 

The viscosity and thermal conductivity of the fluid are based 

upon Sutherland’s law: 
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Where 3

0
1.1842 /kg m  , 29.8 /g m s , 

5 2

0
1.85 10 /N s m    , 

0
298.0592T K , 1.4  , 

287 / /R J kg K  and Pr 0.72 . 

 

 

Owing to the buoyancy force generated by both the heat 

wall ac and cold wall bd that drives the fluid flow, it can be 

expected that the opposite direction of the velocity will be 

simultaneously existed on the ab and cd. This means that the 

edge a0b0 and c0do should be as far as possible from the domain 

of interest, abcd, to mimic the infinite environment. Therefore, 

the artificial buffer zones, a0b0ba and cdd0c0, are added to the 

real physical domain to reduce the computational requirements 

of mimicking the infinite environment. 
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where 
argt et

  is the target value at infinity. So, 

3

target
1.1842 /kg m  , 

, target
0 /

i
u m s  and 

target
101300p Pa . 

For the artificial buffer zones, the absorbing boundary 

condition is applied. Comparing with Eq. (1), the governing 

equations in artificial buffer zones have two additional terms; 

the artificial convection term, 
1

/ x  , to drive the convection 

velocity to the desired velocity at a0b0 and c0do, and the 

damping term,  , to eliminate disturbances. Following Li et al. 

[1], for the artificial buffer zones a0b0ba, 
1

  and 
1

  are 

expressed as 
3
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out

V  and 
out

  are 1.25 and c  is calculated from Eq. (9). 
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0
100( / )U c   and c  is the speed of sound. Similarly, 

for the artificial buffer zones cdd0c0, 1
  and 

1
  are expressed 

as 
3
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however, 
1

  is set as 0.035 to not to excessively damp out the 

fluctuation when the flow enters the real physical domain.  

In addition to the absorbing boundary condition, to 

prevent thermal diffusion from the edge of the arstificial buffer 

zone back into the domain, thereby polluting the results, the 

modified local one-dimensional inviscid (LODI) relations is 

applied at the edge of the artificial buffer zone as the non-

reflecting boundary condition. For more detail information 

about the absorbing and non-reflecting boundary conditions 

mentioned above, Li et al. [1] can be referred. 

 

 

Numerical Method 

The fluid speed induced by the natural convection is nearly the 

incompressible flow so the original compressible solver should 

be modified for this study. The original Roe scheme with a 

preconditioning method and dual time stepping, which has 

been proved to be a powerful tool for the transient natural 

convection simulation in [3,4,5] is applied to resolve Eq. (1). 

Hence, the new governing equations employed to the 

curvilinear coordinates ( , , )    to better resolve the near-wall 

physics is  
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where   is the preconditioning matrix derived by Weiss and 

Smith [6], pU  is the primitive form of 
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The terms /
p

U    and /U t   are approximated by a 

first-order forward difference and a second-order backward 

difference, respectively, and the terms 
1

/F   , 
2

/F   , and 

3
/F    are approximated by a central difference. The 
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Figure 2. The instantaneous temperature and velocity 

contour 

superscripts k and n indicate the iteration numbers of artificial 

time and the proceeding step of real time, respectively. When 

the artificial time /
p

U    converges to 2( 10 )  , the 

magnitude of the ( 1)k th  iteration of the artificial time term is 

approximately equivalent to the magnitude of the ( 1)n th  

time step of the real time, reducing Eq. (10) to the original 

Navier–Stokes equation including the transient term. 

Finally, Eq. (10) can be rearranged as 
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Eq. (11) is solved using the Lower-Upper Symmetric-Gauss-

Seidel (LUSGS) implicit method. 

In the computation of Rk on the right-hand side of Eq. (11), 

the terms of 
i

F  in Eq. (2) based on Cartesian coordinates can 

be divided into two parts. One is the inviscid term, 
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the other is the viscous term, 
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The Roe scheme is employed in the discretization of the 

inviscid
F  term and, when the preconditioning matrix is added, is 

expressed as 

 1

1
,
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For the reconstruction of FR and FL, the fifth-order monotonic 

upstream-centred scheme (MUSCL) without a limiter function 

to prevent turbulent fluctuations from attenuating, is adopted 

and expressed as 
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Aside from the inviscid term, the derivative terms in
ij

A  are 

computed by a second-order central difference. For the 

artificial convection term, 
1

/ x  , in Eq. (13), the first-order 

backward difference is used, which is expressed as 

1 1
1

1 1 1

i i i iU U

x x x
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For the boundary condition, all walls are assumed to be 

isothermal and no-slip conditions. For a0a, b0b, cc0 and dd0 in 

the lateral direction, Neumann condition is adopted. In the 
3

x  

direction, the periodic condition is also implemented to reduce 

the computational effort. 

 

 

Result and Discussion 

The natural convection in a vertical channel as shown in 
Fig. 1 is investigated and the Rayleigh number based on the 
width of the channel is 5.2×105. Two different cases are 

conducted. One is that the wall temperatures in the left and 

right are 
0 20cT T K   and 

0 40hT T K  , respectively 

(CaseI). The other is that the wall temperatures in the left and 

right are 
0cT T  and 

0 60hT T K  , respectively (CaseII). The 

detail computational parameters are listed in Table. 1. Please 
note here. The temperature differences between two walls for 
these two cases are the same so that the Rayleigh numbers are 
also identical. 

 
 Fig 2. shows the contour of the instantaneous temperature 

and the instantaneous velocity for both CaseI and CaseII. For 
the CaseII, except the region near the outlet, the flow field and 
the temperature field are almost stationary. On the other hand, 
CaseI shows unstable phenomena. Generally speaking, at this 

moderate Rayleigh, the natural convection in a vertical channel 
should be stationary such as shown in CaseII. Therefore, it can 
be known that the existing empirical experience for the vertical 
channel flow can’t be applied to Case I. 

Table. 1 Computational parameters 

 

t  32.0 10 s 

Wall  

Temperature 

CaseI: 
0

20
c

T T K  ; 
0

40
h

T T K   

CaseII: 
0c

T T ; 
0

60
h

T T K   

h c
T T T    60 K 

H 0.045 m 

L 0.4 m 

Ra 5.2×105 

T
U  0.3g TH   

Domain size 0.65 0.045 0.02   3
m  

1 2 3x x x       1 0.1 2   
3

mm  

1 2 3N N N   400×200×100 (Physical domain) 
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Figure 3. Statistical data 

 

Figure 4. The distribution of the kinematic dissipation and the 

thermal dissipation 

To investigate the unstable phenomena in CaseI, the 
statistical data of the natural convection in a vertical channel 
but with periodic conditions in both spanwise and streamwise 
directions at the similar Ra number, 5.4×105, in [2] using DNS 
is compared in Fig. 3. Please note here. The discrepancy 

especially near the center of the channel height, 
2

/ 0.5x H  , 

is caused by the different conditions of the temperature on the 

wall. In [2], the condition of 
0

1/ 2
H

T T T    and 

0
1 / 2

c
T T T    is assigned. On the other hand, in CaseI, the 

condition of  
0

2 / 3
H

T T T    and 
0

1/ 3
c

T T T    is 

assigned. The asymmetric distribution indicates that although 
the results are qualitatively good agreement with the DNS 
results, the current boundary condition can count the effect 

from the ambient condition that the periodic condition adopted 
in  [2] couldn’t. Besides, it can be also confirmed that the 
unstable phenomena here can be maintained to generate the 
turbulent structures near the wall. 

 

 
To study the flow and thermal fields near the wall, the 

boundary-layer behavior is investigated. Following [2], for the 

hot wall, the kinetic boundary-layer thickness 
u

  is calculated 

by intercepting 
2 2/u x du dx   and 

maxu u . Similarly, the 

thermal boundary-layer thickness 
T

  is calculated by 

intercepting 
2 2

/
h

T T x dT dx    and 2 / 3
h

T T T   . 

Through these calculations, the effects on the flow can be 
separated. One is from the boundary layer due to the velocity 

gradient, 
2/du dx  (Inside the BL)  and the other is from the 

bulk region caused by the bulk velocity, 
maxu u  (Outside the 

BL). These distributions are compared with the kinetic 
dissipation and the thermal dissipation in Fig. 4. to better 
understand the physical insight. The kinetic dissipation due to 

the mean velocity, 
2 2(d / d )u u x   and due to the velocity 

fluctuations 2( / )
u i j

u x     , and the thermal dissipation due 

to the mean temperature, 
2

(d / d )
T

k T x   and due to the 

temperature fluctuations, 2( / )
T j

k T x      are shown. Based 

on these results, inside the boundary layer, the physical 
properties of the mean dominate the flow field. On the other 
hand, outside the boundary layer, the physical properties of the 

fluctuation dominate the flow field. The flow field shows both 
laminar and turbulent behaviors, which is consistent with the 
GL theory, therefore, can be explained as follows: because 
away from the wall, the turbulence due to the natural 
convection is not strong enough to generate the boundary layer, 
the kinetic dissipation is eventually decomposed into the 
laminar behavior inside the boundary layer and turbulent 
behavior outside the boundary layer. 

 
 

 
The correlation between the Rayleigh number and Nusselt 

number at the half-length of the channel, x1=0.2m, is shown in 
Fig. 5. The distribution shows a discontinuous trend between 

Ra=4.0×106 and Ra=6.0×106. Different from the rest of the 

other distribution, with increasing the Rayleigh number, the 
increment of the Nusselt number can’t be observed during this 
range. Based on the results of Ra=4.19×106 and Ra=5.74×106 
shown in Fig. 5, the reason that the Nu is not increased can be 
blamed on the lack of these unstable phenomena. At 
Ra=4.19×106, the interaction of the heat transfer between two 

walls is disappeared so the effect of enhancing the heat transfer 
from this instability does not exist anymore. Hence, the trend of 
the increment of the Nusselt numbers can’t be maintained when 
Ra is larger than 4.19×106. Moreover, by extending the 
distribution of Ra<4.19×106, the differences of the distribution 
between Ra<4.19×106 and Ra>5.74×106 can be seen as the 
effect of the unstable phenomena, which can be estimated 
around 10%. In other words, the unstable phenomena will 

increase the performance of the heat transfer by around 10%. 
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Figure 5. The correlation between Ra and Nu 

 
 
Conclusion 

The natural convection in an open-ended vertical channel 
with a hot-cold wall configuration has been studied for the first 
time. The compressible solver with the hybrid boundary 
condition is utilized to address the problem of the unknown 
flow rate at the inlet and outlet. Based on the statistical data, it 
can be known that the existing empirical experience for the 
vertical channel flow cannot be applied to the present study. 

Instead, it is found that GL theory, originally proposed for 
horizontal convection, can well describe the unstable 
phenomena here. From the result of the Rayleigh-Nusselt 
number correlation, it can be known that the unstable 
phenomena due to the interaction between two walls can 
enhance the heat transfer by around 10%. 
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