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ABSTRACT

In this study we investigate the passive control of a turbu-
lent boundary layer using miniature vortex generator (MVG),
which consists of pairs of winglets or rectangular blades ar-
ranged in spanwise oriented arrays in the flow. A well-resolved
large-eddy simulation of rectangular MVGs in a spatially evolv-
ing moderate Reynolds number zero pressure gradient turbulent
boundary layer up to '4g = 1350 is performed. Preliminary
results are presented on the different flow characteristics re-
lated to the large streamwise extent high and low-momentum
regions (HSR and LSR) introduced by the MVG. We further
employ a triple velocity decomposition to investigate the turbu-
lent boundary layer modifications. The instantaneous velocity
fluctuation is decomposed into a turbulent velocity compo-
nent and a spatial component, where the latter represents a
spatial variation of the time-averaged flow produced by the
MVG. The turbulent velocity fluctuations associated with the
HSR and LSR are further investigated using proper orthogonal
decomposition (POD). The POD analysis aims to decompose
the velocity fluctuation field in terms of a set of basis func-
tion, which contains the temporal and spatial information of
the dominant structures in the flow. We further examine based
on this, a reduced-order reconstruction of the HSR and LSR,
using one-dimensional and two-dimensional data.

INTRODUCTION

The miniature vortex generator (MVG) is a passive de-
vice capable of generating streamwise orientated vortices
and give rise to long and persistent streamwise streaks that
evolve downstream in boundary layer flows. The MVG
remains a possible solution for effective flow control be-
cause of its simplicity and cost effectiveness. The effects
of MVGs upon laminar boundary layers developed on flat
plates have been well explored and understood both ex-
perimentally and numerically (Fransson & Talamelli, 2012;
Shahinfar et al., 2012). They are well known to delay flow
transition from laminar to turbulent through stabilizing the
growth of Tollmien–Schlichting (TS) waves and oblique dis-
turbance, thereby resulting in a substantial skin friction re-

duction (Fransson et al., 2006; Fransson & Talamelli, 2012;
Shahinfar et al., 2012, 2014; Sattarzadeh et al., 2014). How-
ever, the same may not be true for flow that is fully turbulent.

Recent experimental studies (Lögdberg, 2006;
Lögdberg et al., 2009) on MVGs were conducted to in-
vestigate flow separation controls by vortex generators
in adverse-and zero-pressure gradient turbulent boundary
layers and it has been shown that the induced high and
low-momentum regions persist for up to 300ℎ (where ℎ is
the device height). It would be worthwhile to pursue a study
on the streamwise evolution and behaviour of the induced
high and low-momentum regions in more detail. In addition,
triple velocity decomposition should be considered when
flow exhibits spatial heterogeneity perpendicular to the flow
direction (e.g. spanwise periodicity) (Coceal & Belcher,
2004). The total velocity fluctuations can be decomposed into
a turbulent and coherent fluctuations. The coherent fluctuation
arise due to spanwise periodicity introduced by MVG can be
treated in a similar fashion, as demonstrated by Shahinfar et al.

(2013) and recently by Chan & Chin (2022). In the present
study, the velocity fluctuation fields of the low-speed and
high-momentum regions are first decomposed based on the
triple decomposition. To further investigate their similarity
and difference, the proper orthogonal decomposition is then
employed.

NUMERICAL PROCEDURE

In the following, the streamwise, wall-normal and span-
wise coordinates are denoted as G, H and I, and their velocity
components are denoted by D, E and F, respectively. Time-
averaged velocity is denoted by a (·̄) or a capital letter e.g.
* = D, and fluctuation is denoted by a prime (·′). The symbol
〈·〉 denotes a global mean value over the span.

A numerical simulation of miniature vortex generators
(MVG) set up in a moderate Reynolds number zero-pressure-
gradient turbulent boundary layer (TBL) was performed.
This simulation was motivated by recent experimental stud-
ies of Lögdberg et al. (2009), Sattarzadeh et al. (2014) and
Sattarzadeh & Fransson (2015). The MVG configuration is
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Figure 1: Schematic of the MVG layouts considered in the present study. The MVG parameters are scaled by the inlet
displacement thickness X∗0: ℎ = 4 is the blade height, C< = 1 is the blade width, ! = 10 is the blade length, U = 15◦ is the
angle of attack of the MVG with respect to the flow direction, 3 = 10 is the spanwise distance between the centroids of
blades in one pair and ΛI = 40 is the spanwise spacing between MVG pairs.
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Figure 2: (0) Instantaneous realisation of the streamwise velocity flow field, D/*∞, at H∗ = 0.25 past a pair of MVG. Top
view (1) and cross-section views of the time-averaged streamwise velocity flow field, */*∞, at (2) G∗ = −0.5, (3) G∗ = 0
and (4) G∗ = 0.5, where G∗ = (G−G" )/ℎ and I∗ = I/ℎ. Rectangular box outlines the MVG cross section. In (1), the dashed
black lines mark the spanwise locations of high-speed region (HSR) and low-speed region (LSR), with secondary flows of
common flow down and common flow up at G∗ = 25, respectively.

shown in figure 1. The MVG array is positioned at GM = 950X∗0
from the inlet (corresponds to '4g = X+ ≃ 430, where X∗0 is
the inlet displacement thickness and X is the boundary layer
thickness). The MVG parameters that scaled by the inlet dis-
placement thickness are respectively: ℎ = 4 is the blade height,
C< = 1 is the blade thickness, ! = 10 is the blade length, U = 15◦

is the angle of attack of the MVG with respect to the flow di-
rection, 3 = 10 is the spanwise distance between the centroids
of blades in one pair and ΛI = 40 is the spanwise spacing
between MVG pairs. Large-eddy simulation of the turbulent
boundary layer was performed using a fully spectral numerical
code (Chevalier et al., 2007). A sub-grid-scale approximate
deconvolution model (ADM-RT) has been employed to com-
pute approximations to the unfiltered solutions of the incom-
pressible continuity and Navier-Stokes equations by a repeated
filter operation, i.e.

mD̂8

mG8
= 0, (1)

mD̂8

mC
+ D̂ 9

mD̂8

mG 9
+ m ?̂

mG8
− 1

'4

m2D̂8

mG 9mG 9
= −j�# ⊛ D̂8 , (2)

with superscripts ∧ refer to a resolved-scale, and ⊛ denotes

the convolution and the relaxation term −j�# ⊛ D̂8 : j is
the model coefficient; and �# ⊛ D̂8 is the high-pass approxi-
mately deconvolved quantities. The ADM-RT model has been
widely used for performing incompressible transitional and
turbulent flows simulations (Stolz et al., 2001; Schlatter et al.,
2004; Eitel-Amor et al., 2014; Schlatter et al., 2010). Spa-
tial discretisation is based on a Fourier series with 3/2 zero-
padding for de-aliasing in the streamwise (G) and spanwise
(I) directions, and a Chebyshev polynomial is employed in
the wall-normal direction (H). The computational domain
in the streamwise, wall-normal and spanwise directions are
respectively: G! × H! × I! = 6000X∗0 × 200X∗0 × 360X∗0 using
6144×513×768 spectral modes. This give uniform grid spac-
ings of ΔG+ ≈ 16.9 and ΔI+ ≈ 8.1 in the streamwise and span-
wise directions (the superscript + refers to scaling with the
friction velocity Dg =

√
gF/d and kinematic viscosity a, where

gF is the wall shear stress and d is the fluid density). In the
wall-normal direction, there is a minimum of 15 Chebyshev
collocation points within the region H+ < 10. The first grid
point away from the wall is at H+ ≈ 0.03, and the maximum
spacing is ΔH+max = 10.6. The time advancement is carried
out by a second-order Crank-Nicolson scheme for the viscous
terms and a third-order four-stage Runge-Kutta scheme for the
non-linear terms (Chevalier et al., 2007). Details on the nu-
merical procedure for the MVG can be found in Chan & Chin
(2022).
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Figure 3: (0) Comparison of the time-averaged streamwise velocity at G∗ = 25. The thick grey lines denote the linear
and log-law regions 1/^ log H+ +� with ^ = 0.41 and � = 3.7, 5.2 and 6.2 in the arrow direction. (1) The velocity excess
(* − 〈*〉)/*∞ > 0 associated with the high-speed region and the velocity deficit (* − 〈*〉)/*∞ < 0 associated with the
low-speed region at G∗ = 25. Inset shows the local spanwise skin friction variation at G∗ = 25. (2) Comparison of the

time-averaged streamwise velocity fluctuations: D′′2, D′2 and D̃2.

Figure 2 shows instantaneous and time-averaged stream-
wise velocity fields obtained in the streamwise–spanwise plane
at H/ℎ = H∗ = 0.25 (figures 20 and 21), and spanwise-wall-
normal plane at G∗ = −0.5, 0 and 0.5 of the time-averaged
streamwise velocity field (figures 22, 3, 4), where G∗ = (G −
G" )/ℎ is defined at the centre of a MVG. Spanwise alternating
high and low-speed patterns are observed with a high-speed
region (denoted as HSR) formed along the centreline of the
MVG, accompanied with low-speed region (LSR) to the side-
by-side region.

RESULTS AND DISCUSSIONS

LSR and HSR

We present preliminary results of the mean and turbulent
flow statistics of the HSR and LSR, respectively. Figure 3(0)
shows differences of the time-averaged streamwise velocity be-
tween the HSR and LSR. The velocity defect in the mean flow
profile can be estimated by comparing the downward shift of
the log-law constants, as shown by the grey lines in figure 3(0).
Vertical solid line denotes the wall-normal location H∗ ≃ 0.5,
which yields Δ〈*〉+ = −1.5 at the LSR and Δ〈*〉+ = 1.0 at the
HSR, respectively. The velocity defect is known to be related
to the skin friction variation, where locally the skin friction
is modified over the high- and low-speed regions along the
spanwise direction. Low-speed fluid is lifted from the wall
and reduces the streamwise wall shear stress gF and results
in substantial skin friction drag reduction. On the other hand,
downwash motion transports the high-speed fluid towards the
wall and increases the skin friction drag at the centre of an MVG
pair. Figure 3(1) shows the velocity perturbation defined as
(* − 〈*〉)/*∞, indicating the locations of the HSR and LSR
and showing the presence of streamwise roll-modes induced
downstream of the MVG. The inset in figure 3(1) shows the
local spanwise skin friction variation at G∗ = 25, defined as
� (G, I∗) = (ḡF − ḡF,0)/ḡF,0, where ḡF = a (3D̄/3H) |H=0 is the
time-averaged wall shear stress and I∗ = I/ℎ. The subscript
0 refers to the smooth case. The � > 0 denotes the local in-
crease and � < 0 denotes the local drag reduction. We observe
that HSR is associated with an increase of skin friction up to
� ≃ 0.15 at I∗ = 0, accompanied with a similar skin friction
reduction rate centred at the LSR (I∗ ≃ ±3). Finally, to fur-
ther elucidate the physical modification of the MVG on the
turbulent statistics we employed a similar approach to analyse
roughness surface flow by triple decomposition of the velocity

components, which reads as:

D8 (G, H, I, C) = 〈*8〉(G, H) +D′8 (G, H, I, C) + D̃8 (G, H, I)
=*8 (G, H, I) +D′8 (G, H, I, C), (3)

where the D′
8

and D̃8 on the right-hand side of equation (3)
are the turbulent fluctuation and MVG-induced fluctuation, re-
spectively. The MVG-induced fluctuation D̃8 =*8 − 〈*〉8 is the
spatial variation of the time-averaged flow due to MVG. The to-
tal fluctuation, D′′

8
= D′

8
+ D̃8 is equal to the turbulent fluctuation

(D′
8
) for the smooth wall case since D̃8 = 0. The streamwise total

stress (D′′D′′), Reynolds stress (D′D′) and the MVG-induced
stress (D̃D̃) are presented in figure 3(2) for the HSR, LSR and
the global (overall). Comparison of the MVG-induced stresses
(red and blue dotted-dash lines) over the HSR and LSR sug-
gests that the flow modification introduced by the MVGs on the
HSR is quite different from that in the LSR, which also reflect
on the differences between the turbulent stresses (red and blue
dash lines). Further assessments are necessary to characterised
their different flow behaviours.

POD ANALYSIS OF LSR AND HSR

The proper orthogonal decomposition (POD) is used to
investigate the differences in the flow characteristics associated
with LSR and HSR. In the present study the data obtained
from our numerical simulation the number of spatial points is
larger than the number of snapshots. Therefore, the snapshot
POD approach has been used and is briefly described here.
Practically, the turbulent fluctuation was approximated by a
finite sum of # expansion coefficients 08 and spatial modes q8
as:

D′(GGG, C) ≃
#∑

8=1

08 (C)qqq8 (GGG). (4)

The spatial modes q8 (GGG) were obtained from solving an eigen-
value problem of the correlation matrix of D′. The correlation
matrix was calculated between individual snapshots of stream-
wise velocity flucutuation (D′(GGG, C8) = D′(GGG, C1), D′(GGG, C2), ...)
based on their temporal correlations. The correlation (tem-
poral) matrix is given by:

""" = "8 9 =
1

#C −1
[D′(GGG, C8), D′(GGG, C 9 )], (5)
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where #C denotes the total number of snapshots and [·] defines
a dot product in the present study. The eigenvalue problem to
be solved can be written as:

"""kkk8 = _8kkk8 . (6)

The eigenvalues might be sorted in a descending order to relate
to the energy content of the corresponding modes. Because we
solve the eigenvalue problem based on temporal correlations,
we need to project all the eigenmodes kkk8 to the velocity field
D′(GGG, C8) so that we can recover the first #C spatial POD modes
as

qqq 9 (GGG) =
∑
8 k 9 (C8)D′(GGG, C8)√
_ 9

√
#C −1

, (7)

where the spatial POD modes are essentially orthonormal, i.e.
[qqq8 , qqq 9 ] = X8 9 . Finally, the expansion coefficients 08 can be
obtained by projection of the velocity field on the spatial modes.
In what follows, we will consider two cases. First, POD analysis
results will be presented in figure 4 for a one-dimensional POD
basis case, i.e.

D′(H, C) ≃
#∑

8=1

08 (C)q8 (H), (8)

where we treat D′(H, I∗ = 0, C) and D′(H, I∗ = −3, C) as two in-
dependent time series data representing the HSR and LSR,
respectively. We tend to compare the similarities and differ-
ences of the POD modes in the wall-normal direction between
HSR and LSR. Next, we will proceed to the two-dimensional
case, i.e.

D′(H, I, C) ≃
#∑

8=1

08 (C)q8 (H, I), (9)

where we further examined the correlation to include the span-
wise direction D′(H, |I∗ | ≤ 5, C).

1D POD

The first six one-dimensional POD modes of the HSR and
LSR are shown in figure 4(0). Results show that the differ-
ence in the decompositions between HSR and LSR is quite
small, which might be expected because both HSR and LSR
arise from a pair of symmetrical streamwise vortices generated
by the MVG. Figure 4(1) shows percentage contribution of the
eigenvalues of the first 100 one-dimensional POD modes of the
HSR and LSR. The first POD modes of the HSR and LSR con-
tain roughly 35% of the total energy, mainly reside at the near-
wall region H+ ≃ 15, as shown in figure 4(0). Figure 4(0, 1)
suggest that it is difficult to distinguish between HSR and LSR
velocity fluctuations using only one-dimensional POD. Figure
4(2) shows a simple low-order reconstructions of the turbulent
fluctuation in the HSR and LSR, using a reduced number of
POD modes (e.g. Weiss et al., 2022), i.e.,

D′ ∼ D′#'
(GGG, C) =

#'∑

8=1

08 (C)qqq8 (GGG), (10)

where #' = 1, 2, ..., denotes the number of modes for recon-
struction. Alternately, it is common to reconstruct a low-order
model using the Galerkin projection in the literature, where the
Navier–Stokes equations are first expressed in terms of POD
basis, and by taking an inner product of resulting equations with
the POD modes, a system of ordinary differential equations for
the 08 (C) is obtained (e.g. Rowley et al., 2004). Results show
that the first 10 modes reconstruction is a fairly good approxi-
mation of the intensity profile, where they contribute to almost
95% of the total energy (as shown in figure 4(1)), i.e.,

[D′
#'

(GGG, C8), D′#'

(GGG, C8)]
[D′(GGG, C8), D′(GGG, C8)]

=

#'∑

8

_8/
#∑

8

_8 , (11)

and 08 (C)0 9 (C) = _8X8 9 . Figure 4(2) also demonstrates how the
reconstructed intensity profile vary with increasing number of
modes, particularly at the near-wall peak H+ ≃ 15 and outer re-
gion H/X ≃ 0.2 (H+ ≃ 120), where the latter is clearly associated
with the first two POD modes. Interestingly, the intensity of the
inner peak seems to shift towards H+ ≃ 15 when higher modes
are used in the reconstruction (marked as ⋄ in figure 42).

2D POD

Next we consider POD in spanwise and wall-normal di-
rections (9). It is not surprised to observe that the differences
between the flow characteristics in the HSR and LSR become
much clearer. The first six POD modes q8 (H, I) are presented
in figure 5 ranked according to the eigenvalues. The first POD
mode appear to be anti-correlated in between HSR and LSR,
associating with a symmetrical streamwise vortices pair orig-
inating from the MVG. A visual inspection of the spanwise
separation between the same sign of correlation regions im-
plies that _I ≃ ΛI/2, reflecting the spanwise wavelength of
the energy peak at the dominant spanwise mode observed in
(Chan & Chin, 2022), even though the first POD mode itself
contributes to only 6% of the total energy. The percentage con-
tribution of the first 100 POD modes is plotted in figure 4(1) in
a comparison with the 1D case. It can be seen that the contribu-
tion of the first six modes to the total energy is approximately
25% and up to 80% for the first 100 modes. Figure 6 shows the
velocity reconstruction of the HSR (I∗ = 0) and LSR (I∗ ≃ −3)
obtained using 2D POD modes. The blue line in figure 6(0)
suggests that D′

#'=1 ≃ 0. This is attributed to q1 (H, I∗ = 0) ≃ 0
as shown in figure 5 (illustrated as vertical dashed line). On the
other hand, the vertical solid line represents the reconstruction
of the LSR based on q1 (H, I∗ = −3), plotted as intensity profile
in figure 6(1) (blue line).

CONCLUSIONS

In this study we focused on the flow behaviour of the
long streamwise extended and spanwise periodic high and
low-momentum regions produced by the MVGs. A large-
eddy simulation of rectangular MVGs positioned in a spatially
evolving moderate Reynolds number zero pressure gradient
turbulent boundary layer up to '4g = 1350 was performed
(Chan & Chin, 2022). The fluctuating velocity field associated
with the HSR and LSR are first extracted by a triple veloc-
ity decomposition, then we analysed their velocity fluctuations
using proper orthogonal decomposition in the (i) wall-normal
direction and (ii) spanwise and wall-normal directions. A com-
parison of the POD modes between the 1D and 2D cases shows
that in the 1D case the modes q8 (H) and eigenvalue ratio as-
sociated with the HSR and LSR are similar. This is because

4



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan, July 19–22, 2022

(0)

100 101 102

−0.2

−0.1

0

0.1

0.2

H+

R
e(
q
8
(H
))

HSR ⋄ LSR

q1, q2, q3, q4, q5, q6

(1)

100 101 102
0

20

40

60

80

100

8

(%)

_8/
∑#

1 _,
∑8

1_/
∑#

1 _ (2)

100 101 102

H+

0

2

4

6

D′
#'

2
+

HSR ⋄ LSR

1, 2, 6, 10, all

Figure 4: (0) The first six one-dimensional POD modes q8 (H) ranked by their eigenvalues. (1) Eigenvalues (black)
and cumulative sum of the eigenvalues (red) in 1D case for HSR ( ) and LSR (⋄), respectively. The eigenvalues
(black) and cumulative sum of the eigenvalues (red) for two-dimensional POD modes are shown in ( ). (2) Low-order
reconstruction of turbulent intensity using the first #' one-dimensional POD modes: #' = 1, 2, 6, 10 and all (in the arrow
direction).

q1, _1 = 6% q2, _2 = 4.9% q3, _3 = 3.9%

q4, _4 = 3.4% q5, _5 = 2.9% q6, _6 = 2.5%

I∗ I∗I∗

H∗

H∗

0
0

0
0

0
0

0
0

0
0

0
0

2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

4

4

4

4

66

6

6

66

−4−4

−4

−4

−4−4

−2−2

−2

−2

−2−2

0.04

0

−0.04

R
e(
q
8
(H
,I
))

Figure 5: The first six two-dimensional POD modes q8 (H, I) with their eigenvalues ranked by percentage contributions.

(0)

100 101 102

H+

0

2

4

6

8

D′
#'

2
+

#' = 1, 2, 6, 10 ... all

(1)

100 101 102

H+

0

2

4

6

8

#' = 1, 2, 6, 10 ... all

Figure 6: Low-order reconstruction of turbulent intensity using the first #' two-dimensional POD modes: #' =
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spanwise correlation was not considered in the 1D case. The
major difference between the HSR and LSR is that when taking
into account of the expansion coefficient, the low-order velocity

reconstruction are found to be quite different, as shown in figure
4(2). Example of time traces of expansion coefficient 01 (C) is
plotted in figure 7. On the other hand, for the 2D case, the first
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Figure 7: Time traces of expansion coefficient 01 (C) for HSR (red) and LSR (blue).

few modes show similarly that alternating spatial patterns with
opposite sign spaced in the spanwise direction, where the HSR
and LSR are localised at the interface between these regions
and indicate that the velocity fluctuations are anti-correlated.
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