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ABSTRACT
Directed percolation (DP) and subcritical turbulent transi-

tions in channel flow, which have been a debatable issue in re-
cent years, are investigated by direct numerical simulations for
high-aspect-ratio channel flows with spanwise sidewalls, i.e.,
very thin, wide duct flows. The presence of sidewalls in the
duct flow prevented sustained stable localized turbulence band
at low Reynolds numbers (700 ≲ Re ≲ 1000), which allowed
global turbulence maintenance in the infinitely wide channel
flow, and the critical values were approximately Rec = 1000.
Localized turbulence was spatio-temporally intermittency, and
its split and decay were generally similar to those in the chan-
nel flow, although there were some behaviors specific to the
duct flow. Long-term Lagrangian observation of the split and
decay of localized turbulence near the criticality showed the
branching of turbulence in the space-time-diagrams. The spa-
tial dimension of the branching depended on the duct geom-
etry, with a spatial one-dimensional spread when the distance
between sidewalls was not wide enough (like in a square duct),
but two-dimensional when it was wide, qualitatively confirm-
ing (1+ 1)-dimensional and (2+ 1)-D DP characteristics, re-
spectively. The power-law scaling exponents for the Reynolds
number dependence of the transition profiles were found to be
consistent with the specific critical exponents of the two types
of DPs, respectively.

INTRODUCTION
Wall-bounded shear flow in subcritical regime forms a

large-scale intermittency of coexisting laminar and turbulent
flow, even when the Reynolds number Re is much lower than
the upper critical value ReL determined by the linear stability.
Also, once the flow becomes completely laminar, turbulence
does not spontaneously nucleate, which is know as an absorb-
ing phase transition. That is turbulence can be sustained glob-
ally by maintaining equilibrium localized structures. The lo-
calized turbulence generally has a large-scale spatio-temporal
intermittency (STI). This phenomenon has been found to be
universal at the onset of the subcritical turbulent transition. A
well-known example is the turbulent puff in pipe flow, where

laminar and turbulent regions are arranged alternately and in-
termittently with randomness only in the streamwise direction.
Each turbulent puff may split into two turbulent puffs or de-
cay and, as the Reynolds number goes down to the global-
stability criticality, those two events are stochastically compa-
rable (Avila et al., 2011; Mukund & Hof, 2018).

Recently, these turbulent branching and some statistics of
STI were shown to have directed percolation (DP) universality,
as conjectured by Pomeau (1986). A narrow Taylor-Couette
flow (TCf) and a wide-gap annular flow exhibit similar (1+1)-
dimensional STI of pipe flow and follow (1+1)-D DP univer-
sality class, where the first number is the spatial dimension and
the latter indicates time (Lemoult et al., 2016; Takeda et al.,
2020). In other canonical flows in wide channels, the STI is
more complicated because a spatially two-dimensional pattern
is formed with turbulent stripe and oblique band (Prigent et al.,
2002; Barkley & Tuckerman, 2005; Tsukahara et al., 2005;
Duguet et al., 2010; Tuckerman & Barkley, 2011; Tuckerman
et al., 2020). Some subcritical transitions in the wide channels
were found to follow (2+1)-D DP universality class; the Wal-
effe flow by Chantry et al. (2016), the wide TCf by Klotz et al.
(2022), and the channel flow (also known as plane Poiseuille
flow, PPF) by Sano & Tamai (2016); Takeda & Tsukahara
(2019); Shimizu & Manneville (2019).

For the PPF between two parallel infinite plates, the local-
ized turbulence forms the stripe pattern consisting of oblique
bands for Re< 1500 (Tsukahara et al., 2010), despite the linear
stability analysis by Orszag (1971) saying that ReL = 5772.2.
The experimental nominal-channel flow and the numerical
PPFs with large-scale domains show good agreements with
(2+1)-D DP universality class, but the transition profiles be-
low the criticality (Re < 1000) deviates from that, where the
flow can maintain turbulence for Re ≈ 800 with isolated band
which is (1+1)-D STI and straight ahead at an angle of approx-
imately 45◦ (Tao et al., 2018; Xiao et al., 2021). The presence
of spanwise sidewalls, i.e., a duct as experimental channel, af-
fects the intermittency formation. This sidewall and finite-size
effects depend on the duct geometry such as the aspect ratio
A defined in the flow-cross-section as a ratio of the long side
against the short one. In a square duct of A = 1, (1+1)-D STI
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Table 1. Computational conditions of medium- to high-aspect-ratio duct and plane Poiseuille flows (PPF). Case shows an aspect ratio
of duct channels A (≡ Lz/Ly), but A∞ indicates the infinite channel (PPF) with periodic boundary condition in spanwise direction. L∗

i
is the domain size non-dimensionalized by the channel half width δ , and Ni is the number of grids. The wall-unit resolutions ∆+ are
values at Reτ = 64, but at Reτ = 48 for A∞ with largest case.

Case L∗
x ×L∗

y ×L∗
z Nx ×Ny ×Nz Reτ ∆x+ ∆y+ ∆z+

A24 512×2× 48 4096×64×1016
46–110 8.0 0.2–4.6 3.0

A96 512×2×192 4096×64×4088

A∞
512×2×409.6 4096×64×4096 49–110 8.0 0.2–4.6 6.4

819.2×2×1024 4096×64×8192 37–49 9.6 0.2–3.5 6.0

shows the same phenomena as a turbulent puff in a pipe flow
(Khan et al., 2021). At A = 9, Takeishi et al. (2015) identified
two-dimensional zigzag pattern like a stripe structure. The in-
finite/finite size effect might be a main cause of the modulation
in DP features and of the critical values discrepancy.

In the present study, we performed direct numerical simu-
lations (DNSs) of medium-to-high-aspect-ratio duct flows, up
to A = 96, and the PPF in subcritical regime at low Reynolds
numbers, to discuss the sidewall effect on DP features in tur-
bulent branching and the transition profiles.

NUMERICAL SET-UP AND METHODOLOGY
Geometry of Duct Flow

The duct flow is considered as the flow in the channel
between two parallel planes with two parallel sidewalls in the
spanwise direction to be driven by a constant pressure gradient
(dP/dx) in the streamwise (x) direction. The typical configura-
tion is depicted in Fig. 1 with the three-dimensional Cartesian
coordinates system. The geometry of the rectangular duct is
determined by the distance between the spanwise sidewalls,
that is, we used the width-to-height aspect ratio defined as

A ≡ Lz

Ly
=

Lz

2δ
(1)

where δ is the channel half width in the wall-normal (y) direc-
tion. A typical example is the square duct flow with A = 1. A
rectangular duct with A > 1 has a wider distance between the
spanwise sidewalls, as shown in Fig. 1. In all cases, the stream-
wise velocity u(y,z) is not uniform in the spanwise direction
because of sidewalls and corners, unlike PPF. However, these
effects attenuate for high-aspect-ratio. The detailed solution is
in Wu & Song (2022); Kohyama et al. (under review).

In the present DNS study, we chose two different values
of A = 24 and 96 to cover medium- and high-aspect-ratios.
This range allows us to exhaustively investigate the sidewall
effects on the turbulent flow and spatio-temporal intermit-
tent structures. For reference, previous experimental nominal-
channel (duct) flows in the subcritical region have been per-
formed comprehensively with a wide range of aspect ratios
A = 7.5 by Lemoult et al. (2012), 52 by Seki & Matsubara
(2012), 83 by Yimprasert et al. (2021), 180 by Sano & Tamai
(2016), and 245 by Paranjape (2019). However, since their
the streamwise domain is finite, it has been difficult to dis-
cuss statistical steady states about their transition profiles and
turbulent branching near the criticality. Except for the report
of Reg = 1500 for a narrow duct with A = 7.5 (Lemoult et al.,
2012), many experiments reported Reg ≈ 1000 or less for large
values of A. Numerical studies have already confirmed a sim-
ilar trend only for duct flows with low- to medium-aspect-
ratios (A = 1–9, 50), but not for higher one (Khan et al., 2021;
Takeishi et al., 2015; Wu & Song, 2022).

x, u

z, w

y, v

h = 2δ

Lz

Lx

Figure 1. Schematic of rectangular duct flow. Boundary ge-
ometry is defined by the aspect ratio A≡ Lz/Ly (= Lz/2δ ) > 1.

Computations
The non-dimensional governing equations for the velocity

ui = (u,v,w) and the pressure p are the equation of continuity
and the Navier–Stokes equation for incompressible Newtonian
fluid in the Cartesian coordinate system xi = (x, y, z):

∂u+i
∂x∗i

= 0 (2)

∂u+i
∂ t∗

+u+j
∂u+i
∂x∗j

= −∂ p+

∂x∗i
+

1
Reτ

∂ 2u+i
∂x∗2

j
+ fi (3)

where the superscripts of ∗ and + indicate quantities non-
dimensionalized by δ and the friction velocity uτ , respec-
tively. fi in the last term of Equation (3) is a body force to
mimic the sidewall solid phase in the channel flow by means
of the immersed boundary method (IBM). The control param-
eter of the present DNS is the friction Reynolds number Reτ

normalized by uτ converted from the constant pressure gra-
dient: Reτ ≡ δuτ/ν = δ

√
−dP/dx∗/ν . Here, the pressure

P is already divided by the fluid density ρ , and ν represents
the kinematic viscosity. Given a sufficiently large A, the fric-
tion velocity asymptotically approaches uτ =

√
τw,y/ρ with

the wall shear stress τw,y on the main wall surface at y = 0 and
2δ . In the following discussion, we use the Reynolds number
Re defined with the streamwise velocity at the center line in
laminar flow uc lam. = uτ Reτ/2 as

Re ≡ δuc lam.

ν
= Re2

τ/2 (4)

We adopted two types of numerical boundary conditions:
the non-slip and the periodic boundary conditions. The non-
slip condition was adopted on the main walls normal to the y
direction, while the periodic boundary conditions were in the x
direction. The non-slip boundary on the spanwise sidewall was
configured by the direct-forcing IBM around the spanwise end
faces of the computational domain (Fadlun et al., 2000). We
applied the following IBM rules to the staggered-grid velocity
components at the sidewall boundary: no inflow or outflow at
the sidewall surfaces, and u = 0 inside the sidewalls.

Equations (2) and (3) were spatially discretized using fi-
nite differences and with fine enough grid resolutions ∆x+i , as
listed in Table 1, according to the standard criteria of DNSs
(Tsukahara et al., 2005). We adopted the uniform grid in the x
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Figure 2. Typical instantaneous flow field and space-time-diagrams (STDs) in duct flow with A24 for Re = 1128. (a) Snapshot of
instantaneous intermittency with turbulent spots and oblique bands visualized by the wall-normal velocity v+ in the channel central
x–z plane at y = δ . The sidewalls are at z/δ = 0 and 48. (b–f) STDs of |v+(x̂ or z, t)| as the spatio-temporal intermittencies which
indicate localized turbulence blanching. Localized turbulences are shown in black and laminar flow in white. In (b,c,d), spaces are the
streamwise direction at near the sidewall to the center between the sidewalls as on the dashed lines z/δ = 6, 12 and 24 in (a). Here, the
space x̂ (= x−U f · t) is in Lagrangian coordinate corrected with the frame speed U f = 15.5uτ . In (e,f), space is taken in the spanwise
direction at x̂/δ = 128 and 384. (g) typical STD of (1+1)-dimensional directed site percolation (DP).

and z directions and the non-uniform in y, where the grid was
finer near the main wall, cited from Moin & Kim (1982). For
the present DNS of duct flows, the spanwise grid sizes were
finer than those for PPF, especially because of the boundary
layer on the spanwise sidewalls. Table 1 lists the parameters
for the rectangular duct flows and the PPF. The time advance-
ment was carried out using the second-order Crank–Nicolson
and Adams–Bashforth schemes for the viscous term in the y di-
rection and the other terms, respectively. Further details about
the numerical methods used can be found in Abe et al. (2001).

RESULTS AND DISCUSSIONS
We discuss the spatial spread of the spliting and decaying

behavior of localized turbulence in duct flows with the A = 24
and 96 from the space-time-diagrams (STDs). Its dependence
on the distances from the sidewall surface and the aspect ra-
tio are also discussed. Subsequently, based on the DP scaling
theory, the critical exponents of the transition profiles such as
the Reynolds number dependence of the turbulent fraction that
follow a power law near the criticality are assessed in refer-
ence to the unique exponent values of DP universality classes.
For reference, DP scaling was also performed for that of the
PPF. The differences from the duct flow in terms of the critical
values, the exponents and its fitting range were investigated.

Spatio-Temporal Intermittency
Figure 2(a) and 3(a) show typical instantaneous flow

fields in both ducts in the x–z plane at the mid-channel of y= δ

near the criticality for different aspect ratios. High fluctua-
tions of the wall-normal velocity v+ in red and blue indicate
longitudinal streaks and fine vortices as turbulence. To sum-
marize briefly, the intermittencies depend on the spanwise do-
main size, as shown below. The duct flow with A24 does not
form a perfect one-dimensional intermittency like a puff, but
forms an quasi-1D structure in the streamwise direction con-
sisting of turbulent spots and short oblique bands. For A96, the
spot is not stationary, but some growing bands are dominant,
and leads to a 2D structure similar in PPF. For the details of
their stochastic behaviors, see Kohyama et al. (under review).

Localized turbulence is usually advected in the stream-
wise direction with bulk velocity um, since there is positive
mean flow in the PPF and duct flow. STDs represent the
time evolution of turbulent and laminar flows at the space
marked by the dashed lines in Figs. 2(a) and 3(a) from a La-
grangian view. For example, the horizontal axes of STDs in
Figs. 2(b-d) and 3(b-e) are the streamwise space, but observed
from a Lagrangian coordinate (i.e., x 7→ x̂ ≡ x−U f · t). Here,
the frame velocity U f is slightly larger than the bulk veloc-
ity um in the critical neighborhood focused on in this study
(U f > um ≈ 14.5uτ ). Because a turbulent band’s head grows
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Figure 3. Typical instantaneous flow field and STDs in duct flow with A96 for Re = 1105. (b-g) STDs presented in the same manner
as in Fig. 2, but the frame speed is U f = 15.25uτ . (h) typical STD of (2+1)-D site DP for one spatial direction in the 2D space.

obliquely and extends to the downstream faster than um . Note,
in the beginning of the intermittency away from the criticality,
e.g., when a robust stripe pattern is formed, U f and um are ap-
proximately the same. For details of STD in a frame moving
Lagrangian view, see Kashyap et al. (2020), but in the PPF.

Subsequently, the branching structure of the localized tur-
bulence is compared with the STDs of (1+1)-D and (2+1)-D
site DP shown in Figs. 2(g) and 3(h), respectively, which is
one of the models of directed percolation. The details about
the DP model can be found in Henkel et al. (2008). Then,
we will qualitatively estimate the dependence on the distance
from the sidewalls with respect to the presence or absence of
DP-like features in the spatial spread of the branching.

For the STI of |v+(x̂, t)| in the narrow duct flow with A24,
the STD at the center of the sidewalls (z = 24δ ) shown in
Fig. 2(b) is in a good qualitative agreement with the STI of
(1+1)-D DP shown as an example in Fig. 2(g). However, the
STIs at z = 6δ , 12δ near the sidewall shown in Fig. 2(c,d)
do not have a single series of branches like the feature of
(1+1)-D DP. The STDs of |v+(z, t)| in the span space shown in
Fig. 2(c,d) are similarly strongly influenced by the sidewalls,
each having only independent events: band and spot attach-
ment, decay, and reflection at the sidewalls. It indicates that
the DP phenomenon is not effective in the spanwise direction

in cases where the domain is so narrow that turbulence does
not split in the spanwise direction. As shown in Fig. 3(b,c),
the both STDs at z = 48δ and 96δ as far away from the side-
wall are qualitatively almost the same for the wide duct flow of
A96, indicating that the sidewall effect is not significant. This
branching is also two-dimensional based on the STDs in the
spanwise direction at x̂ = 128δ and 384δ shown in Fig. 3(f,g).
These branches are two-dimensional, which are different from
Fig. 2(b), and qualitatively similar to the STD of (2+1)-D DP
shown in Fig. 3(h), although slightly different. Closer to the
sidewall (z = 6δ and 24δ ), as shown in Fig. 3(d,e), the split-
ting behavior of the developed localized turbulence becomes
weaker. Thus, STI is affected by the sidewalls and STD de-
pends on its location, i.e., it is actually not characterized by
branching because of turbulence trapping on the sidewalls.

In summary, the stochastic behaviors of bands, including
the splitting, colliding, and decaying, appear as a branching
process, as illustrated in the STDs of localized turbulence. In
Fig. 2(b), the duct flow of A24, which is strongly affected by
the sidewall and the finite size effect, forms a spatially one-
dimensional branching process similar to (1+ 1)-D DP STI,
in spite of asymmetry in the streamwise direction. This is not
true for A96 (Fig. 3(b,c)), where we should consider a spatially
two-dimensional intermittency like in the infinite channel flow
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(PPF). We may conjecture that DP universality changed from
(1 + 1)-D to (2 + 1)-D between A24 and A96. On another
note, to reproduce more exactly the STD such as asymmetry
or fractal-like branching, it will be necessary to adopt the DP-
based model proposed by Manneville & Shimizu (2020) or the
Domany-Kinzel (DK) model, which generalized DP model.

Transition Profiles and Critical Exponents
The transition profile can be described as the Reynolds

number dependency of the order parameter from a developed
turbulence to fully-laminar state. For the order parameter
which indicates the macroscopic order in the overall system,
the turbulent fraction was adopted, which is the degree of spa-
tial intermittency, i.e., the fraction of localized turbulence in
the total domain. The temporal turbulent fraction Ft was cal-
culated using the wall-normal velocity in the x–z plane at the
center of the main channel (y = δ ) as shown in Figs. 2(a) and
3(a), using the binarization of turbulent or laminar state with
the threshold as |v+(x,δ ,z)|θ = 0.1. Note that Ft = 0 corre-
sponds to the fully-laminar, and Ft ≈ 1 the fully-developed
turbulent state. In the profiles, the turbulent fraction ⟨Ft⟩t is
long-term-averaged over Ft at the statistical steady state (at
least 500δ/uτ , i.e., about 15 wash-out times in the streamwise
domain), which is much longer than the time scale of the band-
splitting frequency, even near the criticality. In particular, the
time scale of the turbulence branching phenomenon becomes
significantly longer as the critical value is approached, so the
time-averaging is longer than ∆t∗ = 1000 in the vicinity of the
critical value. Based on the transition profiles (⟨Ft⟩t vs. Re)
of two duct flows and the PPF, we investigated the presence
or absence of DP universality class’ scaling laws in power-like
transition, their critical values and exponents, and the global
critical Reynolds number Reg, which is the lower bound for
sustained turbulence. (Figure for profiles is not shown in this
paper, but is available in Kohyama et al., under review.)

Profiles of phase transitions are often followed by a power
law of the control parameter (in this study, the Reynolds num-
ber). The present profiles in the near criticality similarly agree
with the following power-law scaling as

⟨Ft⟩t ∼
(

Re−Rec

Rec

)β

(5)

where Rec is the critical Reynolds number of profile follow-
ing the power law and β is the critical exponent with posi-
tive value. The critical Reynolds numbers Rec and the critical
exponents β of the duct flows and the PPF transition profiles
are summarized in Table 2, calculated by scaling according
to Equation (5). The global critical values Reg as cited from
Kohyama et al. (under review) are also noted. In general, Rec
differs from Reg due to the domain size effects: e.g., Rec = 994
and Reg = 722 in the PPF of A∞. However, in the present duct
flows, the difference between the two critical values is not so
significant, indicating a “pure” second-order phase transition.

In terms of the DP universality and the scaling theory,
β in Equation (5) has a specific value depending on the spa-
tial dimension of the intermittency. For example, if turbulent
spots spread one-dimensionally, we expect β(1+1)-D ∼ 0.276,
whereas β(2+1)-D ∼ 0.583 if two-dimensionally. The criti-
cal values for both the duct flow with A96 and the PPF cor-
responding to A∞ were about Rec = 1000, and both criti-
cal exponents agreed with β(2+1)-D within the error range.
Also, the critical value for wide duct flow asymptotically ap-
proaches Rec ≈ 1000, which is consistent with the expecta-
tion in the nominal-channel flow experiment in Carlson et al.

Table 2. Critical Reynolds number Rec and the critical expo-
nent βfit expected by Equation (5) for each fitting range. Also
shown is the global critical Reynolds number Reg, which is
the lower limit of the globally sustained turbulence, cited from
Kohyama et al. (under review). For reference, the theoretical
critical exponents β of the two types of DPs are listed below.

Case Reg Rec β Fitting range

A24 1105 1119 0.28±0.02 1100–1600
A96 1058 999 0.57±0.03 1100–1405
A∞ 722 994 0.58±0.19 1155–1405

(1+1)-D DP — — ∼ 0.276 —
(2+1)-D DP — — ∼ 0.583 —

(1982) that three-dimensional disturbances grow to turbulence
at Re > 1000. While, for the duct flow with A24, the critical
value is slightly higher (Rec = 1119), and the critical exponent
is lower (β = 0.28± 0.02) and in agreement with β(1+1)-D,
indicating a drastic transition to fully-laminar flow and sensi-
tivity to changes in the Reynolds number around the criticality.
Note, the large error range of the critical exponent in the PPF is
due as the plots when the order parameter is close to ⟨Ft⟩t = 0
are not near the critical value Rec and not included in the fit-
ting, which is due to the peculiar PPF profile. Due to the char-
acteristic turbulence-maintaining structure at 700≲Re≲ 1000
in PPF, the profile at Re< 1155 deviates from the second-order
phase transition. Where, the fitting ranges are different, as
shown in Table 2, but generally 1100 ≲ Re ≲ 1500 as near
the critical values. However, above this Reynolds number re-
gion, all profiles are the same and the curve becomes gradual
and deviates from the critical exponent of DP. Because around
Re= 2000, the intermittent structure is a pattern-structured tur-
bulent stripe, which has robustness and no DP-like active split-
ting. It is suggested that all duct transitions with A ≳ 96 follow
(2+ 1)-D DP, whereas (1+ 1)-D DP for not so high-aspect-
ratio due to the formation of quasi-one-dimensional turbulent
spots like the turbulent puff in the transitional pipe flow.

CONCLUSION
In the present study, directed percolation (DP) phenom-

ena in the STIs of localized turbulence and there transition
profiles on subcritical regime have been investigated in two
high-aspect-ratios (A = 24 and 96) duct flows and the in-
finitely wide channel flow (PPF) by DNS to characterize its
phenomenon. Since the structure and behavior of intermit-
tency become larger near the criticality, the previous experi-
mental and numerical studies have not yet been able to capture
the essence of the critical phenomena due to insufficient do-
main and statistics. Long-term Lagrangian observations of the
interaction of multiple localized turbulences were performed
in the present DNSs for the largest-scale domain.

For the effects of the presence or absence of sidewalls and
the distance between sidewalls (i.e., duct flow or PPF, and as-
pect ratio) on the spatio-temporal intermittencies (STIs) and
thus the transition profiles, the following points were found.

— The global turbulence maintenance limitation is approx-
imately asymptotic to Reg = 1000 even for high-aspect-
ratio duct flows with spatial finiteness, as predicted on the
experimental channel flow in Carlson et al. (1982). It does
not maintain turbulence down to Reg = 722 as in the PPF,
and for Re < 1000 all turbulent spots and bands decay
within a finite time, becoming fully-laminar flow.

— Local turbulence split and decay are significantly ob-
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served in duct flow near the criticality (Re ≈ 1100–1200),
causing large-scale STI as a single series of branches.
For medium aspect ratio (A24), turbulent spots and bands
form quasi-one-dimensional intermittency only in the
streamwise direction at the center of the sidewalls, closely
similar to (1+1)-D DP branching. While, for high aspect
ratio (A96), the intermittency is two-dimensional in the
streamwise and spanwise directions, and the branching is
close to (2+1)-D DP. However, near the sidewalls, local-
ized turbulent is not actively splitting, but is often decay-
ing, etc., and its branching has no DP-like features.

— The Reynolds number dependency of the turbulent frac-
tion (transition profile) follows the scaling of the power
law of DP around the critical value. The profiles of the
duct flows with A24, and A96, and the PPF at Re ≈ 1100
were consistent with the critical exponents of (1+ 1)-D
and (2+1)-D DP universality classes, respectively.

For future work, a detailed discussion of DP universality
classes would require a quantitative investigation of the critical
exponents by power law scalings, not only for the transition
profile, but also for the laminar gap distributions of the STI.

Present numerical simulations were performed on the SX-
ACE and SX-Aurora TSUBASA supercomputers with tech-
nical support from the Cyberscience Center at Tohoku Uni-
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(Japan Society for the Promotion of Science) Fellowships
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