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ABSTRACT
Fundamental data representing the simultaneous effects

of compressibility, density variation, and curvature as primary
turbulence generation mechanisms remains sparse. This work
builds off our previous suite of LES studies on the combined
effects of these three variables, with a specific focus on cur-
vature effects. Various measures of shear layer thicknesses
and growth rates are presented. Exact self-similarity is not
achieved, although mean field and turbulent stress profiles
show reasonable collapse. Growth rates and turbulent stresses
for stably and unstably curved configurations are compared,
and the effects of increasing curvature intensity are presented.
Lastly, a comparison with compressibility effects suggests that
for the given parameter range, curvature and compressibility
effects are comparable.

INTRODUCTION
Many aerospace applications involve high-speed jet

plumes with complex flow physics and multiple turbulence
mechanisms. A comprehensive understanding of turbulence in
these flows is essential in developing and improving numerical
methods for such vehicle design and analysis, and is currently
lacking. In particular, the shear layers in these rocket-motor
exhaust plumes exhibit streamwise curvature, along with pres-
sure gradients, shock waves, and other complexities. Prior
studies focused on turbulent mixing have been limited to com-
pressibility and variable density effects, but studies of turbu-
lence at combining all three turbulence mechanisms (com-
pressibility, density variation, and curvature), has been sparse.

An area which has been particularly less studied is the
joint effect of streamwise curvature and compressibility in
mixing layers, although streamwise curvature effects have
been considered in more detail in other flows. An analogy
between the phenomena in turbulent shear flow under buoy-
ancy and under streamwise curvature was first drawn by Brad-
shaw (1973), which depended on the close correlation be-
tween temperature and streamwise velocity fluctuations. Later,
Castro & Bradshaw (1976) studied the non-constant curvature
in impinging flow and examined Reynolds stresses along the

shear layer centerline. Experimental studies of simple mix-
ing layer configurations with streamwise curvature at moder-
ately compressible levels have not been conducted. Plesniak
et al. (1994) also conducted experiments of nearly incompress-
ible, mildly curved mixing layers, and observed that shear lay-
ers grew approximately linearly and that vortical structures
that developed were related to upstream disturbances rather
than the Taylor-Görtler instability. Stability analysis by Otto
et al. (1996) indicated that centrifugal instability modes in the
form of longitudinal vorticies are supported in curved, incom-
pressible mixing layers if the centerline curved into the faster
stream. Experiments of reacting, curved mixing layers with a
focus on scalar mixing and hydrodynamic instabilities were
conducted by Karasso & Mungal (1997), where it was ob-
served that mixing efficiency did not increase in unstable con-
figurations. Later, curvature effects on turbulent channel flows
were studied by Nagata & Kasagi (2004) with a specific fo-
cus on increasing curvature intensity on turbulence intensity.
Several experimental studies of streamwise curvature effects
in turbulent boundary layers have been conducted (Jeans &
Johnston (1982); Wang et al. (2017)), but similar experiments
of curved shear layers across a comparable parameter space are
lacking. Aside from our prior work (Matsuno et al. (2022)),
numerical studies of curved mixing layers in the highly com-
pressible regime have not been conducted.

The primary goal of this work is to improve the under-
standing of turbulent mixing layers influenced by compress-
ibility and curvature. Large eddy simulations (LES) of tur-
bulent shear layers at low and high Mc, and stable and un-
stable curvature configurations, are analyzed to improve the
current understanding of the fundamental physics behind tur-
bulent mixing in flows with multiple physical effects. Metrics
for shear layer thicknesses and growth rates, and including a
discussion of their evolution for stable and unstable configu-
rations, are presented. The effects of increasing curvature in-
tensity on turbulent statistics are demonstrated. The analogy
between centrifugal and buoyancy effects, following work by
Bradshaw (1973) and Nagata & Kasagi (2004), is also eval-
uated. Finally, compressibility and curvature effects for the
present parameter range are compared.
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Table 1: Physical parameters and curvature levels during
initial and turbulent ‘asymptotic’ growth

Mc u2/u1 δΓ(0)/rc Turb. Final Final
δΓ/rc δ̇Γ/∆u(0) ∆u/∆u(0)

0.2 0.5 0.001 0.005 - 0.008 0.071 0.98
0.5 0.010 0.075 - 0.108 0.035 0.97
1.9 0.001 0.004 - 0.011 0.069 1.00
1.9 0.010 0.061 - 0.110 0.140 1.01

0.8 0.2 0.001 0.006 - 0.009 0.036 0.99
0.2 0.005 0.022 - 0.027 0.018 0.98
0.2 0.010 0.049 - 0.108 0.018 0.96
4.5 0.001 0.006 - 0.009 0.025 1.01
4.6 0.005 0.025 - 0.040 0.061 1.02
4.8 0.010 0.056 - 0.085 0.079 1.04

FLOW CONFIGURATION

The temporally developing curved shear layer configured
as two co-annular streams which are periodic in the streamwise
and spanwise directions. The outer and inner radial free stream
values are denoted 1 and 2, respectively, in the remainder of
this paper. The initial conditions for the curved shear layer
are set such that vorticity is zero everywhere except within the
shear layer region.

The physical parameters governing this flow are the cur-
vature intensity, the convective Mach number, the velocity ra-
tio, and the density ratio across the shear layer. The curvature
intensity, defined as the ratio of the (initial) shear layer thick-
ness compared to the radius of curvature, is selected to range
from δ0/rc = 0.001 to δ0/rc = 0.01. The convective Mach
number, Mc = ∆u/(c1 + c2), a measure of the mean flow’s
compressibility, was selected to be Mc = 0.2 and 0.8 in order to
provide comparison of compressibility and curvature effects.
Nominally unity density ratio configurations ρ2/ρ1 = 1 were
selected for analysis in order to focus on simple curvature ef-
fects due to kinematics, without large mean density gradient
effects. For the curvature intensities investigated, centrifugal
instability attributed to the velocity and compressibility of the
mean flow can be considered. Eckhoff & Storesletten (1978)
gave the necessary stability criterion for a compressible colum-
nar vortex (with uz = 0) as

Φ =
u2

θ

r

(
1
ρ

dρ

dr
−

u2
θ

c2r

)
> 0 (1)

Eckhoff & Storesletten also demonstrated that the derivation
of this expression recovers the classic Rayleigh criterion for
centrifugal stability in the incompressible limit, d(Γ2)/dr > 0.
The present unity density ratio shear layers are stably curved
for u2/u1 < 1, and unstably curved for u2/u1 > 1, as summa-
rized in Table 1.

Initial conditions

Each stream in the curved shear layer is setup to be
vorticity-free in the mean flow. The shear layer region is cen-
tered about the centerline radius rc with an initial thickness of
δ0. The initial values for the constant free stream total pres-
sure, Pt , and entropy, ξi, for each free stream i = 1,2 are set
according to Eqn. 2-3. Both streams have the same ratio of

specific heats, γ = 1.4, and gas constant Rg.

Pt(r) = Pt,1g+Pt,2(1−g) (2)

ξ (r) = ξ g+ξ (1−g) (3)

g(r) =
1
2

[
1+ tanh

(
r− rc

δ0

)]

The streamwise velocity profile is set by the circulation as
uθ = Γ/r, and the pressure profile is computed by integrating
d p/dr = ρu2

θ
/r from r = rc to the upper and lower boundaries,

using a reference pressure pre f at the centerline. This refer-
ence pressure is set such that the speed of sound at the center-
line is a constant cre f for all cases. The initial conditions sat-
isfy potential, inviscid flow. To induce turbulence, solenoidal
velocity perturbations were added to the shear layer. By select-
ing simple profiles for each u′

θ
and u′r, the remaining spanwise

component of the fluctuating velocity can be solved analyti-
cally from the continuity equation to maintain a divergence-
free initialization. For u′

θ
and u′r, sinusoidal perturbations

are added at selected spatial modes k(i)
θ

= i2π/Lθ and k( j)
z =

j2π/Lz for i, j ∈ [4,8] with amplitude A(r) = exp[σ(r− rc)
2].

These perturbations decay exponentially with a rate of σ = 5
into the free streams. The initial perturbation amplitude is
0.05∆ū and phases φ were chosen randomly for each mode.
The chosen form for velocity perturbations is given below.

u′θ = ∑
i, j

A(r)cos(k(i)
θ

θ +φ1)cos(k( j)
z z+φ2)

u′r = ∑
i, j

A(r)sin(k(i)
θ

θ +φ1)sin(k( j)
z z+φ2)

u′z = ∑
i, j

A(r)

rk( j)
z

sin(k(i)
θ

θ +φ1)[(1−2r(r− rc))cos(k( j)
z z+φ2)

+ k(i)
θ

sin(k( j)
z z+φ2)]

NUMERICAL METHODS
The high-resolution LES have been generated with the

CFD solver OVERFLOW. Convective fluxes are computed
with WENO5 and 4th order Runge-Kutta time integration. In
the mixing layer region, the grid has uniform and isotropic grid
spacing with more than 30 points across the initial shear layer.
For the inner and outer radial free streams, upper and lower
‘buffer’ regions with grid stretching were applied. The upper
and lower boundaries of the domain are adiabatic slips walls
which enforce zero radial velocity at the wall. Buffer regions
in the form of grid stretching and numerical dissipation were
also implemented; further details on the LES calculations are
given in our previous documentation (Matsuno et al., 2022).

RESULTS
Growth rates

Notation and coordinates used throughout the remainder
of this work are the centerline radius rc, the centerline stream-
wise position s = rcθ , and the normalized transverse coordi-
nate η = (r − rc)/δ99. The 99% thickness, δ99, is based off
the mass-averaged circulation profile, Γ̃ = rũθ , and is similar
to the visual thickness reported by previous experimental stud-
ies of planar shear layers. Another thickness defined from the
mean circulation, which is constant in each of the free streams,
can be computed. Equation 4 defines this ‘circulation’ thick-
ness, δΓ, which is analogous to the definition of momentum
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Figure 1: Thickness and growth rate measures for stable and unstable cases at Mc = 0.8 and δ0/rc = 0.01.

Figure 2: Spanwise velocity fields of stable (left) and unstable (right) cases for Mc = 0.8 and δ0/rc = 0.01. The domain
has been truncated in the radial extent for visualization purposes.

thickness for planar shear layers.

δΓ(t) =
1

ρ0(∆Γ)2

∫ R1

R2

ρ̄(Γ1 − Γ̃)(Γ̃−Γ2)dr (4)

An expression for the growth rate based off the circulation
thickness can be defined by taking the time derivative of Eqn.
41. This analysis follows a similar derivation of planar shear
layer growth rate by Vreman et al., where the integrand is
first expanded and rewritten in terms of the mean momentum
and kinetic energy equations. The explicit expression used to
compute an integral growth rate, neglecting viscous effects, is
given below, where K = 1

2 ũ2
θ

, and R12 = ũ′′
θ

u′′r .

dδΓ

dt
=

2
ρ0(∆Γ)2

∫ R1

R2

[
r

∂

∂ r
(rρ̄ ũrK + rũθ ρ̄R12)

− r2
ρ̄R12

∂ ũθ

∂ r
+ r2ũr

∂ p̄
∂ r

]
dr

Various measures of shear layer evolution are shown in Fig. 1.
The left-most figure shows the evolution of the 99% thickness
for two high speed shear layers at Mc = 0.8 with stabilizing
and destabilizing curvature. After a period of transient growth,
the flow becomes turbulent once the shear layer has growth
to approximately twice its initial δ99 thickness. This occurs
around a normalized convective time of t∗ = 100 for the unsta-
ble case, and t∗ = 240 for the stable layer. While the transient
growth phase is not a focus of this study, it has been consis-
tently observed that the more stable configurations require a
longer transitional period before turbulence begins. Compared

1Note: Our previous derivation of this growth rate erroneously ex-
cluded terms from this integrand; the equation for integrated growth
rate is corrected here.

to the plot of δ99, the evolution of the circulation thickness is
a much smoother due to its integral form. Both time histories
of the shear layer thickness definitions are normalized by the
initial value and predict the same trend in growth rates with
respect to curvature, namely that the destabilizing configura-
tion results in a growth rate four times larger than the stable
configuration.

The growth of the circulation thickness normalized by
the initial velocity difference, δ̇Γ/∆u, indicates approximately
three periods of adjustment in the shear layer evolution. First,
a period of transient perturbation growth occurs, correspond-
ing to the peaks in growth rates at t∗ = 80 for the unstable case
and t∗ = 140 for the stable case. The second period is a tran-
sition to well-developed turbulence, between t∗ ∈ [80,130] for
the unstable case and t∗ = [150,270] for the stable case. A sim-
ilar evolution can be seen for the shear stress integrated across
the shear layer, when normalized by the instantaneous thick-
ness δ99∆u2. The distinction between this second transitional
period and the asymptotic growth period is not clearly defined,
but have been estimated based off these plots. The correspond-
ing start times with respect to the shear layer evolution have
been marked with transparent dotted lines in Fig. 1. The cur-
vature ratios δΓ/rc during the periods chosen for collection
of statistics are given in Table 1. In this work, cases are re-
ferred to by their initial curvature levels. However, the overall
change in curvature intensity seen by the turbulent shear layer
are more moderate. For example, while the approximately pla-
nar configuration has an initial curvature of 0.001, its final cur-
vature intensity as measured by δΓ/rc approaches that of the
intermediate curvature cases. Lastly, Table 1 also presents the
final growth rate normalized by the initial velocity difference
for each case. These tabulated rates are not exactly constant,
but represent the final turbulent growth rate measured before
eddies begin to be constrained by the computational domain.

Stable vs. unstable configuration
Unstable and stable configurations at δ (0)/rc = 0.01 and

Mc = 0.8 will be compared in this section. The velocity ratio
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Figure 3: Mean profiles of stable and unstable configurations at Mc = 0.8 and δ0/rc = 0.01.

is reciprocal between the stable and unstable cases, while the
velocity difference ∆u is initially the same2. Differences in
shear layer evolution can clearly be seen in Fig. 1. Transition
to turbulence and development into an asymptotically growing
turbulent state occurs about twice as quickly for the unstable
case compared to the stable case. Even during the peak growth
period of the stable shear layer, the growth rate remains less
than the growth rate of the planar shear layer.

Instantaneous spanwise velocity fields for the two config-
urations are shown in Fig. 2. In all configurations, this az-
imuthal flow travels in the clockwise direction. Two distinct
differences between the turbulence in the two configurations
can be easily observed by comparing these two visualizations.
The magnitude of turbulent fluctuations in the unstable case
is larger than that of the stable case (both plots use the same
color scale). This difference in turbulent stresses can also be
seen in the profiles of TKE in Fig. 4. The peak TKE in the
unstable case is nearly twice that of the stable case. Note that
the striation along the shear layer is opposite for the stable and
unstable cases; this direction of shearing for the turbulent ed-
dies is consistent with the streamwise velocity gradient in the
two cases. In the stable configurations, the streamwise veloc-
ity uθ is higher along the outer free stream; and in the unstable
configurations, uθ is higher along the inner free stream. The
corresponding evolution of mean velocity profiles during mul-
tiple snapshots during turbulent growth are plotted by radius
r in Fig. 3 (a) to show spreading of the shear layer. There is
a small, negative velocity gradient in each of the free stream
regions in order to ensure that the free streams have constant
circulation and do not introduce vorticity to the mixing layer.
Note that this requires the velocity difference across the shear
layer to also change as the shear layer spreads, though the
change is relatively small (see Table 1). For the stable cases,
∆u decreases in time, whereas it increases in time for the un-
stable cases. In planar shear layers, ∆u remains constant and
the mean shear decreases as the shear layer grows. In the sta-
ble configuration, because the velocity difference decreases as
the shear layer grows, the mean shear contributing to TKE pro-
duction and eddy growth are further reduced.

The mean circulation for these same profiles are plotted
by (r − rc)/δ99 in Fig. 3 (b) to show approximate similarity
during a subset of the turbulent period. Likewise, collapsed
profiles of TKE and turbulent shear stress R12, normalized by
the instantaneous velocity difference, are also compared. For
both the stable and unstable cases, the peak R12 magnitude is
consistently one third of the TKE magnitude. The shear stress
is positive in the unstable case and negative in the stable case,
which is consistent considering the production of shear stress
is dependent on the mean velocity gradient.

2In a temporally developing, planar shear layer the growth rate de-
pends on the velocity difference, and not the free stream velocity ratio.

Effects of increasing curvature intensity
The effects of increasing curvature for both stabilizing

and destabilizing curvature are shown in Fig. 4. The growth
rate for the stable case with intermediate curvature, δ0/rc =
0.005, is lower than previously anticipated, and the final
growth rate approaches the final growth rate of the higher cur-
vature case. A similar trend of closeness between TKE and
shear stress magnitude can be seen between theses two cases
as well. An explanation for this unexpected trend in the stably
curved cases remains to be determined.

The curvature intensity appears to influence the transient
periods of the stable and unstable growth rates, such that cases
with intermediate curvature levels of δ0/rc = 0.005 have a
thickness growth which is mostly bounded by the lower and
higher curvature cases. The asymptotic growth periods be-
tween the stable and unstable configurations show some no-
table differences. The unstable configurations appear to reach
their asymptotic growth period more quickly compared to the
stable configurations. These periods of growth correspond
to the regions where the integrated shear stress also begin to
plateau. In contrast, the stabilizing configurations did not ex-
hibit any region of growth which was definitively linear. The
upper left two plots in Fig. 4 instead show that the δΓ in the
stable cases have progressively slower growth rates which con-
tinue to drift until the computational domain is exceeded. Nor-
malized TKE and shear stress profiles for the unstable cases
have distinct magnitudes, with the intermediate curvature case
sitting evenly between the low and higher curvature cases. In
contrast, the difference in TKE and shear stress magnitudes for
the stabilizing curvature cases is less evenly distributed. Con-
sistent with the observed growth rates, the cases with initially
higher curvature have similar magnitudes of TKE and shear
stress which are distinct from the low curvature case.

If the turbulence in curved free shear layers is considered
similar to that in boundary layer flow along a concave or con-
vex surface, structural differences in the mixing layer may be
expected. In particular, the presence of Görtler vorticies or
other spanwise-coherent structures may be expected to form
in the turbulent region. While some qualitative differences can
be observed in the mixing layer’s spanwise organization while
perturbations grow into turbulence, a clear difference coher-
ent structures was not observed when the flow becamee fully
turbulent. This observation remained unaffected by compress-
ibility levels. At both low and high speeds, during periods of
well-developed turbulent growth, large-scale spanwise vorti-
cies were not seen in the mixing region.

Small differences can be observed in instantaneous snap-
shots of streamwise vorticity for unstable configurations, as
shown in Fig. 5. These snapshots are shown for comparable
times during the shear layer evolution (δ99(t)/δ99(0) = 1.6).
A low curvature levels, the vortical region is compact and
nearly uniform in height across the span of the mixing layer.
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Figure 4: Evolution of thicknesses, growth rates, TKE, and R12 for stable (top) and unstable (bottom) cases at Mc = 0.8.

Figure 5: Instantaneous normalized streamwise vorticity at contour levels ωθ δ99/∆u ∈ [−5,5] along a spanwise (r − z)
plane for unstable cases and rofiles of streamwise vortex stretching. The domain has been truncated for visualization
purposes. Top: Mc = 0.2 at δ0/rc = 0.001 (left) and δ0/rc = 0.01 (right). Bottom: Mc = 0.8 at δ0/rc = 0.001 (left) and
δ0/rc = 0.01 (right).

At higher curvature levels, a less compact region of vorticity is
observed in the mixing region. In addition this sparsity, slight
stretching of streamwise vorticity can be observed from the
anisotropy of contour levels. This effect is more obvious for
the low speed cases, where elongated iso-contours of vorticity
are seen. The right-most profiles in Fig. 5 show the turbulent
vortex stretching term of the mean streamwise vorticity trans-
port equation, ω ′

ju
′
i, j , normalized by the instantaneous scales.

Three profiles at times leading up to the visualization time are
plotted to indicate the drift in value during this transient pe-
riod. Statistical noise is evident in the profiles, but a general
form of the vortex stretching profile can be gleaned. As seen
qualitatively in the instantaneous visualizations, the normal-
ized stretching of streamwise vorticity is slightly amplified for
increased curvature intensity. The intermittent vorticity field
also suggests that higher levels of curvature achieve equivalent
shear layer thicknesses over a shorter development period.

These visualizations are shown to highlight the differ-
ences in the vortical structures during early shear layer evo-
lution. However, as the turbulence developed further, larger

vortical structures or roll cells were not observed. Profiles of
streamwise velocity fluctuations, u′′

θ
, during the time period of

fully developed turbulence (δ99(t)/δ99(0) = 3) are shown in
Fig. 7. Streaks of elongated streamwise coherence are visi-
ble, but definite differences in the organization of u′′

θ
were not

observed. The apparent lack of large-scale spanwise structure
in the fully turbulent regime is similar to experimental obser-
vations by Jeans & Johnston (1982) for incompressible turbu-
lent boundary layers under concave curvature. Experiments by
Wang et al. (2017) showed clusters of spanwise vorticity and
swirl in supersonic boundary layers under convex curvature,
but the clusters’ spanwise extent was not shown.

Regions of sparse vorticity may be expected as the shear
layer ‘falls apart’ during the early evolution of unstable cases,
compared to stable cases with a restoring force of the free
stream pressure gradient. In stable cases, due to the velocity
ratio u2/u1 < 1, the free stream pressure gradient in the radial
direction which scales as d p/dr ∼ u2/r is largest along the
outer free stream. As a result, it is possible that vorticies which
may otherwise stray into the outer free stream flow from the
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main mixing region are pushed back by the increasing mean
pressure further from the mixing layer. The parameter gov-
erning this balance between shear and centrifugal production
can be written similarly to a flux Richardson number R f for
stratified flow. As discussed in detail by Bradshaw (1973) and
later revisited by Nagata & Kasagi (2004), an analogous R f
for centrifugal flows can be written considering the production
of turbulent stresses Rθθ and Rrr. Taking the first term of Pθθ

as the shear production term and R12ũθ/r as the centrifugal
production term of Pθθ and Prr, the balance between shear and
centrifugal terms is given in Eqn. 5.

Pθθ =−2R12
∂

∂ r

(
ũθ

r

)
−4R12

ũθ

r
Prr = 4R12

ũθ

r

R f = 2ũθ

/
r2 ∂

∂ r

(
ũθ

r

)
(5)

Profiles of R f for stable and unstable flows, plotted with
solid lines in Fig. 6, indicate increasing curvature for unsta-
ble flows gives a more negative value of R f in the mixing
layer and increasing curvature for stable flows gives a more
positive value of R f , especially near the mixing layer edges.
For the stable cases, the velocity gradient includes two zero-
crossings which cause the discontinuity in R f near the mixing
layer edges. Both the stable and unstable configurations give
R f ≈ −1 in the free streams, which implies the two terms in
the Rθθ production cancel and the TKE production is zero.
Thus, this definition of R f confirms that the free streams are
stable. The parameter for Eckhoff’s stability criterion, Φ as
defined in Eqn. 1, is also plotted with dashed lines in Fig. 6 to
demonstrate the centrifugal stability of the curved shear layer
is dependent only on the shear layer region and not on the free
stream behavior.

Comparison to compressibility effects
The effect of compressibility in planar shear layers is a

four- to five-fold suppression of growth rate between incom-
pressible and highly compressible shear layers (Papamoschou
& Roshko (1988)). For the Mc range in this work, which
varies from quasi-incompressible at Mc = 0.2 to moderately
compressible at Mc = 0.8, the data shows ≥ 50% decrease in
growth rates. As given in Table 1, at low, stabilizing curva-
tures, the growth rate reduction is 0.036/0.071 = 0.507. At
higher, destabilizing curvatures, the growth rate reduction is
0.079/0.14 = 0.564. In comparison, the difference in growth
rate δΓ/∆u between the most stable and the most unstable
cases gives a factor of four difference at both Mc = 0.8 and

Figure 6: Profiles of R f (solid lines) and Φ (dashed lines)
for high speed stable (left) and unstable (right) cases
with increasing curvature intensity.

Figure 7: Instantaneous visualizations of normal-
ized streamwise velocity fluctuations at contour levels
u′′

θ
/∆u ∈ [−0.5,0.5] along a streamwise (θ − z) plane

for centrifugally unstable cases. The streamwise extent
has been truncated by 50% for visualization purposes.

Mc = 0.2. In the present data, the compressibility effect re-
mains relevant across the ranges of curvature intensities ex-
plored. The trends observed suggest that, for the given range
of curvature intensities, the effects of stabilizing and destabi-
lizing curvature may be just as important as compressibility
effects.

CONCLUSIONS & FUTURE WORK

This work augments our prior investigation of turbulence
in curved, compressible shear layers. Two shear layer thick-
nesses based on the mean circulation profile are used and
thickness growth rates for stable and unstable cases are pre-
sented. While a period of turbulent stress collapse exists, the
flow is not perfectly self similar. Increasing curvature intensity
increases turbulent kinetic energy and shear stress for unstably
curved cases, and slightly decreases the stress magnitudes for
stably curved cases. An analogous ‘flux’ Richardson number
is evaluated and defines the stability of the flow consistent with
Eckhoff’s and Rayleigh’s centrifugal stability criteria. DNS
calculations of the spatially developing equivalent of this tem-
poral shear layer are in progress.
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