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ABSTRACT

Direct numerical simulations (DNSs) were performed for
a turbulent channel flow over three-dimensional sinusoidal
rough walls to test a roughness scaling method in a transi-
tionally rough regime. Three groups of rough cases were em-
ployed to assess the scaling formula by systematically varying
the friction Reynolds number Re; and the ratio of the rough-
ness height k to the channel half-height 8, and their predictions
were compared with Nikuradse’s experimental data and other
roughness types. A new coupling scale Re;/(k*S)" is then
proposed by combining Re; and in a logarithmic form, where
n is the scaling exponent, k* is the viscous-scaled mean rough-
ness height and S is the roughness steepness. All the simulated
data for the roughness function and the peak of the streamwise
turbulent velocity fluctuations collapse into single curves with
this coupling scale. Our investigation of the rough-wall scaling
behavior with DNS data can serve as a basis for supplementing
Moody’s data in the transitionally rough regime.

INTRODUCTION

Turbulent flow over a rough wall almost always produces
higher drag than that of a smooth wall. The increase in drag is
often quantified by the roughness function AU ™, which reflects
the downward shift of the mean velocity profile (Hama, 1954).
In practice, the increase of drag usually brings a lot of harm
and efficiency loss, and predicting the drag on a rough wall is
therefore of crucial importance to most engineering problems.
A central goal in the present study is to predict the roughness
function directly from the given rough surface and flow condi-
tions, and then predict the wall resistance.

The dependences of the roughness function on the rough-
ness height and other geometric features such as the rough-
ness density and shape have been explored extensively for var-
ious types of roughness (Chung et al., 2021). Some scales for
the equivalent sand grain roughness have been found (Flack &
Schultz, 2010). However, the influence of the Reynolds num-
ber is usually not considered in these scaling methods. Further-
more, the Reynolds-number scaling of the second-order statis-
tics has to the best of our knowledge not been reported in the
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literature for rough-wall turbulence. In the present study, the
Reynolds number and the wall roughness parameters are com-
prehensively considered, to parameterize the turbulent statis-
tics.

NUMERICAL SIMULATION

The problem under consideration is the fully devel-
oped turbulent channel flow over three-dimensional sinusoidal
rough walls. A schematic diagram of the channel is shown in
figure 1. A right-handed Cartesian frame fixed in the physi-
cal space is employed with x, y and z axes along the stream-
wise, vertical and spanwise coordinates, respectively. The cor-
responding velocity components in the three directions are u, v
and w. The flow is driven by a mean pressure gradient, which
is dynamically adjusted to keep the constant flow rate in time.
For the roughness parameters, & is the semi-amplitude of the
sinusoidal roughness and A is the wavelength of the rough-
ness elements. The governing equations are the dimensionless
incompressible Navier-Stokes and continuity equations:
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— +u-Vu=-Vp4+—V?
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where u = (u,v,w) are the velocity components, p is the pres-
sure and Rey, is the bulk Reynolds number. The above equa-
tions are discretized by using a pseudo-spectral method in the
x- and z-directions and a second-order finite-difference scheme
on the staggered grids in the y-direction. A third-order time-
splitting method is employed for time advancement. To deal
with the deformation boundary, we use a coordinate transfor-
mation to transform the irregular physical domain (x,y,z) into
a rectangular computational domain (&;,&,,&3) based on the
boundary-fitted system. The periodic condition is applied in
the streamwise and spanwise directions, and the no-slip con-
dition is applied to the walls of the channel. More details re-
garding the numerical methods and analysis procedures can be
found in Zhang et al. (2019).
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Figure 1. Schematic diagram of the turbulent channel flow
over three-dimensional sinusoidal rough walls.
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Figure 2. Instantaneous vortical structures over rough walls.
Contours of the instantaneous streamwise velocity are plotted
in the x — y plane and the y — z plane.

In this work, three groups of numerical cases were sim-
ulated with reference to Nikuradse’s pipe experiment: (1)
k/6 =1/18; (2) k/6 = 1/54; (3) k/6 = 1/108. For each
group, the friction Reynolds number was systematically varied
in the range 180 to 1080, while the physical geometrical size
of the roughness element relative to the half-channel height
was kept constant. The size of the computational domain is
27d x 28 x ©wd for the all cases, where 0 is the half channel
height. The mesh is uniformly spaced in the streamwise and
spanwise directions, and stretched in the wall-normal direction
according to a cosine distribution. A detailed list of the rough-
ness parameters and computational parameters can be found in
Table 1.

RESULTS

Figure 2 shows the instantaneous three-dimensional vor-
tical structures, to visually describe the differences in turbu-
lent flow field caused by roughness elements. Here, we take
the rough case kK =30, AT = 212 at Re; = 540 of as an ex-
ample. The overlying vortical structures are visualised via the
isosurface of the local swirling strength A.;. The vortical struc-
tures of the rough cases are dense and finely fragmented vorti-
cal structures appear near the roughness elements as compared
with the smooth-wall case. The streamwise size, inclination
angle and distribution pattern of these vortices are modulated
by the rough form and rough parameters (De Marchis et al.,
2015). Note that the low-speed zones are lifted up in the y-z
plane, corresponding to the formation of the streaky structures.
To study more quantitatively the effects of roughness, turbu-
lent statistics are presented and discussed in the following.

The increase in wall drag caused by the surface rough-
ness is manifested in the streamwise mean velocity profile as a
downward shift in the logarithmic region, known as the rough-
ness function AU ™, as shown in figure 3. The roughness func-
tion is itself a function of the roughness Reynolds number. The
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Figure 3. Profiles of the mean streamwise velocity for k/d =
1/18. The circle symbols represents smooth-wall cases, the
square symbols represent the rough-wall cases, and the colors
represent different Reynolds numbers.

logarithmic law for a smooth wall and a rough wall respec-
tively can be expressed as

1
U= ;my* +C—AUT, 2)

where «x is the von Kdrmdn constant and C is the offset con-
stant, here k¥ = 0.40 and C = 5.3. The velocity profiles de-
crease significantly with the increase of Reynolds number, that
is, and the main factor affecting the roughness function is the
roughness height k™. In our previous study (Ma et al., 2020),
we found that the roughness function is strongly correlated
with the proportion of wall pressure drag and total drag, while
the roughness height has a significant impact on the pressure
drag. In addition, the mean velocity profiles of three groups of
rough cases all satisfy the log law from a certain position above
the crest of the roughness elements. Therefore, from the per-
spective of first-order statistics, the hypothesis of outer-layer
similarity is still satisfied for rough-wall cases (Townsend,
1976). For the other two groups of cases, the variation trend is
similar to that of k* = 1/18.

The presence of roughness elements has a significant ef-
fect on the velocity fluctuations. According to the phase aver-
age and triple decomposition, the second-order velocity corre-
lation can be decomposed into three parts, i.e.

T —— 1570 : i s
Uilj == Wil j + Uil j + u;u 3)

where the second and third terms on the right-hand side denote
the dispersive and Reynolds stresses, which correspond to the
wave-induced and turbulent components, respectively. Figure
4 shows the streamwise Reynolds stress profiles with respect
to the wall-normal height for k/8 = 1/18. Compared with the
smooth-wall case, the roughness elevates the wall-normal lo-
cation about a roughness height, and the peak intensity of the
Reynolds stresses decreases with increasing k™, which indi-
cates that the typical coherent structures near the wall are dis-
rupted, and the turbulent fluctuations are weakened. The larger
roughness viscous scale causes more significant suppression of
the near-wall turbulence. In the outer region, the profiles col-
lapse with the smooth-wall case at higher vertical positions,
supporting the Townsend’s outer-layer similarity hypothesis.
Further, figure 5 shows the streamwise dispersive stress
profiles with respect to the wall-normal height for k/6 = 1/18.
For the smooth-wall case, @i should be zero. The profiles
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Table 1. Reynolds number, roughness parameters and computational setup. Ax™ and Az" characterize the grid resolution in the
streamwise and spanwise directions, respectively; Ay;;in and Ay; are the minimum grid resolution near the bottom boundary and the
maximum grid resolution near the channel centerline in the vertical direction, respectively.

Case Re; kt AT Ny, Ny, N, Axt Ayt Ay AT
180 10 71 144,144,144 7.85,0.04, 4.0, 3.9
360 20 141 192,144,192 11.78,0.08, 7.9, 5.9
k/6=1/18 540 30 212 288,192,288 11.78,0.07,7.9, 5.9
720 40 283 384,288,384 11.78,0.04,7.9, 5.9
1080 60 424 576,384,576 11.78,0.04, 8.9, 5.9
180 333 24 384,288,384 2.94, 0.1, 1.9, 1.47
360  6.67 47 384,288,384 5.89,0.02,3.9,2.9
k/6=1/54 540 10 71 384,288,384 8.83,0.03,5.9, 4.4
720 1333 94 384,288,384 11.78,0.04,7.9, 5.9

1080 20 141 576,384,576 11.78, 0.06, 8.9, 5.9

180 1.67 12 576,384,576 1.96,0.01, 1.5, 1.0
360 333 24 576,384,576 3.93,0.01,2.9, 2.0
k/6§=1/108 540 5 35 576,384,576 5.89,0.02, 44,29
720 6.67 47 576,384,576 7.85,0.02, 5.9, 3.9

1080 10 71 576,384,576 11.78,0.04, 8.9,5.9
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Figure 5. Profiles of the streamwise dispersive stress for
k/& =1/18. The definitions of the lines and symbols are the
same as those in Figure 2.

Figure 4. Profiles of the streamwise Reynolds stress for
k/& = 1/18. The definitions of the lines and symbols are the
same as those in Figure 2.

between the roughness function and the Reynolds number and
the roughness height. The roughness function AU™ is calcu-
lated by the mean bulk velocity Uy’ — U,’,. Then AU is plot-
ted against kS in figure 6. All the data collapse onto a single
line, i.e.

show an outward shift as the roughness Reynolds number k™
increases, but do not show a monotonic variation different
from the Reynolds stress profiles. This may be related to the
&,-plane average method (Zhang et al., 2019). Even so, the
dispersive stresses for all the cases are dominant within the
roughness sublayer but drop rapidly to zero above the crest of
roughness elements.

According to the above analysis, it’s known that the mean
velocity profiles and Reynolds stress profiles in the rough-

_ 1 -
AD* = —In (k)" +538, )

wall turbulence are affected by both the Reynolds number and
the roughness height. While our previous study (Ma et al.,
2020) showed that the coupling scale k™S produces a more
reliable prediction than the equivalent sand grain roughness
height k" for various types of roughness, where S is the rough-
ness steepness, i.e. the absolute streamwise gradient of the
surface. Therefore, we first consider the scaling relationship

where kT is the arithmetic average of the absolute values of
the profile height (Chan et al., 2015). The goodness-of-fit
R? is close to 0.97 for the above fitting function equation.
Eq.(4) shows that the roughness function is only affected by
the viscous-scaled roughness height k' and the rough shape
parameter, i.e. the roughness steepness S, independent of
the Reynolds number. In addition, some published data are
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Figure 6. Variations of the roughness function AU with the
coupling roughness scale k*S.

added for comparison. Correspondingly, several roughness
forms were chosen: the irregular random two-dimensional si-
nusoidal roughness (Napoli et al., 2008), close-packed right-
angle pyramids (Schultz & Flack, 2009), randomly rotated
ellipsoid (Yuan & Piomelli, 2014), three-dimensional ‘egg-
carton’ rough pipe (Chan et al., 2015) and graphite and grit-
blasted roughness. Good agreement with Eq.(4) is evident in
all cases, which indicates that the relationship for wall resis-
tance prediction is also valid for other roughness forms. How-
ever, different roughness forms bring forth different intercepts
in the scaling formula Eq.(4) (Ma et al., 2020), especially for
random roughness patterns, which can be found in the litera-
ture (Ma et al., 2022).

In smooth-wall turbulence, the peak intensity of the
streamwise velocity fluctuations increases with the increase of
Reynolds numbers (Marusic et al., 2010). In order to com-
prehensively consider the effect of Reynolds number and wall
roughness, we refer to the above scaling method applied to the

roughness function and make a log-linear fit for @Jr as a func-
tion of kTS and Re; as follows,

_ R
W =0.13In {(l_;;)z] 115 )

An effective collapse of data onto a single curve is obtained,
and the goodness-of-fit R reaches 0.97. Figure 7 shows this
scaling relationship, together with some published data (Chan
et al., 2018; Yuan & Jouybari, 2018; Jelly & Busse, 2019;
Busse & Jelly, 2020; Ma et al., 2020). Good agreement
with Eq. (5) can be seen in all the data, indicating that @+
for all these rough surfaces, both regular and random, two-
dimensional and three-dimensional, scales with Re¢/(k*S)2.
Note that there is no variation in the intercepts in the scaling
formula Eq.(5) for different roughness types, different from
the roughness function. This arises the turbulent fluctuations
presented here give all the turbulent components after triple
decomposition, by which the influence of the unevenness of
the spatial geometry due to roughness is isolated. Our results
show that the streamwise turbulence fluctuation intensity has a
strong correlation with the roughness function, which provides
an alternative to k;" as a means of characterizing rough walls.

CONCLUSIONS

In the present study, DNSs with a body-conforming
grid were performed for turbulent channel flow over three-
dimensional sinusoidal rough walls. With reference to Niku-
radse’s pipe experimental data, three groups of rough cases are
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Figure 7. Variations of the roughness function @+ with the

coupling roughness scale Re;/ (kT S)2.

considered by systematically varying the relative roughness
height k/8 and the friction Reynolds number Re;. Our cur-
rent simulations, which are mostly in the transitionally rough
regime in term of the Moody’s chart, where the turbulence
statistics are both dependent on the Reynolds number and the
roughness height. To this end, we proposed the combination
of Re; and kT, i.e. Rer/(k"S)", consistent with the theoret-
ical derivation through a linear-log fit. Good data collapse
is obtained. While compared with the equivalent sand grain
roughness height k", kS appears to be the more suitable pa-
rameter, and indeed achieves a good scaling behaviour in the
roughness function and the peak of the streamwise turbulent
velocity fluctuations for various types of roughness forms. The
present work can serve as a basis for substituting the widely-
used Moody chart in engineering.
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