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ABSTRACT
A methodology to achieve robust closed-loop feedback

control of a turbulent flow using machine learning is outlined.
The chosen candidate system is a square cross-sectional cylin-
der with two moving surface actuators embedded in the wind-
ward face at the leading corners. A Long Short-Term Mem-
ory (LSTM) Neural Network is trained using motor actuation
and pressure sensor data to forecast future system states. This
LSTM model is then implemented with Model Predictive Con-
trol (MPC) in order to achieve closed-loop flow control. The
derived controller performance was tested experimentally us-
ing three objective functions: recovery of mean-base pressure
set-point from perturbation, and drag or wake fluctuation in-
tensity optimizations. An adaptive learning algorithm, which
adjusts the model to new Reynolds number (Re) conditions
without user intervention, is implemented to extend controller
performance and achieve robust control.

INTRODUCTION
Control of bluff body flows is an important research area

impacting many industry applications such as efficiency of en-
ergy harvesting systems, stability of high-lift devices or drag
reduction of high-speed ground vehicles (Choi et al., 2008).
Achieving robust control of fluid flows is challenging as the
response to an actuation is non-linear, thus linear control meth-
ods are generally not successful. Additionally, the high dimen-
sionality of the Navier-Stokes equations implies a large param-
eter space and thus real-time optimization is difficult. Finally,
turbulence increases complexity as fluctuations are stochastic
which effectively is equivalent to reducing signal quality, thus
making model identification more difficult.

The use of machine learning in closed-loop flow control
is appealing as it is a strategy used to identify patterns and
relations within large stochastic datasets. Neural Networks
(NN) are machine learning architectures that mimic the inter-
connected nature of neurons in the brain and are capable of
forming input and output relationships through trial and er-
ror. Recurrent Neural Networks (RNN) are a type of NN that
specialize at identifying and correlating patterns through time
by recurrently using earlier outputs as inputs for subsequent
computations. MPC is a control method that uses a predic-
tive model of the system being controlled to optimize future
actuations.

The predictive model is generally a dynamical system of
non-linear ordinary differential equations which need to be nu-
merically solved to achieve predictions of future states. While

MPC is able to achieve control, it can be a computationally
expensive procedure. In particular, MPC must perform an iter-
ative online optimization which involves numerically solving
the model for several candidate actuations in series to deter-
mine the optimal actuation based on a cost function. This pro-
cess is then repeated until the prediction horizon is achieved,
which is the number of time steps the controller is set to pre-
dict.

An alternative approach can be to incorporate LSTM net-
works, a type of RNN whose architecture is more suitable
for long term dependencies. LSTMs do not require numer-
ical solving, can evaluate all candidate actuations in parallel
and can forecast several future states, thus removing all areas
of iteration within the MPC framework. In addition to reduc-
ing the computational complexity of MPC, LSTMs are a good
candidate predictive models as they excel at forecasting time
evolution data from smaller training sets when compared to
traditional techniques (Siami-Namini et al., 2018). Therefore,
by using a time series of past system states and actuations as an
input, future system states can be predicted using the LSTM.
Moreover, the LSTM is capable of learning dynamics associ-
ated with new Re conditions when they arise, without user in-
tervention, allowing for the model to adapt and achieve robust
control over a Re range.

Studies that have achieved flow control are usually re-
stricted to a narrow range of Re, and application to turbulent
flows have had limited success. For example, Bieker et al.
(2019) applied a RNN in conjunction with MPC to a compu-
tational model of a fluidic pinball system which was able to
achieve closed-loop control authority at low Re = 100− 200,
with performance lowering as Re increased. Additionally, the
system controlled was laminar and computational. This novel
approach aims to achieve robust real-time experimental con-
trol of turbulent fluid systems by reducing optimization time
and using high performing predictive model architectures.

In this work, the LSTM-MPC approach is implemented
to control the turbulent wake of a square cross-sectional cylin-
der. The actuators are rotating cylinders at the leading edges
which are modulated to achieve forcing frequencies which ex-
cite the separated shear layer. These shear layer excitations
can manipulate the circulation generation and transport to ex-
ploit flow instabilities and alter the wake dynamics. Singbeil
et al. (2021) showed that frequency-based actuation achieves
authority of the flow at lower surface velocity to free-stream
ratios (vsur f /U∞ = 0.2 to 0.4) compared to no forcing fre-
quency (vsur f /U∞ = 3) (Munshi et al., 1997). A model relat-
ing cylinder RPM and obstacle surface pressure will be deter-
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Figure 1. a) Side View of Wind Tunnel Facility. b) Obstacle with surface mounted pressure taps (P1 through P6).

mined experimentally and used to achieve flow control using
MPC.

METHODOLOGY

Experimental Facility
The experiments were performed in a small-scale suction

type wind tunnel shown schematically in Fig. 1a. The wind
tunnel is a = 2510 mm in length consisting of a square cross
sectional inlet (b = 690 mm), interchangeable test-section (c
= 510 mm), square to the circular cross sectional expansion
(d = 1150 mm), and fan shroud (e = 160 mm). Air is drawn
through a honeycomb and four conditioning grids (dscreen =
0.22mm,∆screen = 1.18mm) at the inlet before undergoing a
9:1 area contraction to the square test section with a wetted
cross-sectional area of 203.2 mm × 203.2 mm.

The obstacle is a square cross-section cylinder 3D printed
from PLA (Polylactic Acid) with a characteristic length D =
25.4mm and thickness T = 25.4mm (Fig 1b). The obstacle
was printed with the layers being oriented in the freestream
direction, and the surface was sanded to minimize variation in
surface roughness. Installed 127.0 mm downstream of the test
section inlet, the obstacle spans the test section for an aspect
ratio of 8:1 and blockage of 12.5%.

The actuators are two dact = 10 mm diameter rotating
cylinders, embedded as shown in Fig. 1b, at the leading edges
of the square cylinder. Each cylinder was printed from PLA
and a tight tolerance tool steel shaft was inserted through the
center of the cylinders. Each cylinder was sanded to have sur-
face roughness similar to the obstacle. The cylinders have nine
span wise sinusoidal grooves that have an amplitude of 0.5mm.
The grooves create a forcing frequency equal to nine times the
rate of rotation. One end of each cylinder was connected to
the drive shaft of a brushless servo-motor mounted external to
the test section. The other end of the steel shaft is supported
externally from the test-section using radially loaded ball bear-
ings. Additionally, the cylinders experience a whirling motion
which introduces a forcing frequency and harmonics of the
rate of rotation ( fw = RPM/60) (Baek & Sung, 2000). The
whirling arises due to the center of inertia not coinciding with
the axis of rotation. The whirling is beneficial as it introduces
new forcing frequencies that can be exploited.

Six differential pressure transducers monitor surface pres-
sure at locations P1 to P6 indicated in Fig. 1b. On the
top/bottom surfaces, transducers P1 and P2 are 1-inch water
column (All Sensors D-4V - Sensitivity = 124 Pa/V) and on
the leeward face P3 to P6 are 5-inch (All Sensors Dx-4v Mini
- Sensitivity = 622 Pa/V) transducers. An Advantech PCIE-
1812 DAQ was used to measure all the pressure signals, RPM
signals and output RPM signals.

MPC Methodology
MPC was used to achieve closed-loop feedback control

of the system. Closed-loop control works by measuring the
system output or current system state and feeding it back into
the controller, allowing the controller to improve future actua-
tions. A flow diagram of the entire closed loop control system
and the MPC controller is shown in Fig. 4.

Traditional MPC uses an optimizer which suggests sev-
eral actuation strategies for the next time step based on the
current actuation and the actuation constraints. The suggested
actuations and previous system states are input into a model,
generally a system of ODEs, which gets numerically solved
for each potential actuation. The entire process gets repeated
until the prediction horizon, N, has been reached. By using a
pre-trained LSTM as the predictive system model, the tradi-
tional MPC framework can be altered to reduce computational
complexity since all areas of iteration are eliminated. For this
work, as an input to the LSTM, the optimizer suggests a library
of actuations, created a-priori, containing all possible actua-
tions discritized between minimum and maximum actuations.
The LSTM then computes (in parallel) all of the candidate ac-
tuations inside this library and outputs the predicted system
state for the entire prediction horizon. Afterwards, the opti-
mizer, through the use of a cost function, locks in an actuation.
The cost function is a relationship comparing the systems state
predictions to a desired state which is optimized in order to
choose the optimal future actuation.

The quantity of interest which will be controlled will
be the leeward face base pressure on the obstacle (Cpbase =
(Cp3 +Cp4 +Cp5 +Cp6)/4). The reason for this is to influ-
ence important characteristics that are linked to the leeward
face base pressure such as drag and fluctuating loads on the
obstacle. Thus, the output of the system will be Cpbase, and it
will be controlled with the two rotating cylinders at the lead-
ing edges of the obstacle. In order to use MPC to control this
quantity, a model that relates the system actuation, cylinder
RPM, and the system state, Cpbase, must be developed. Cpbase
will be treated as the system state that will be measured and
fed back into the controller, where it will be used as an input
to an LSTM, and the output will be future values of Cpbase.

LSTM Methodology
An LSTM was used to create a model of the system which

will be used inside the MPC controller. The LSTM was cho-
sen since it has the capability of making use of history when
given an input sequence to better inform the prediction. A di-
agram of an LSTM showing how inputs, outputs are handled
is shown in Fig. 5. The diagram shows the flow of infor-
mation through time (horizontally) and how information is re-
membered and forgotten through forget and input gates. The
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Figure 2. Motor Actuation Speed (RPM1 and RPM2) and Pressure Response for a) Recovery of mean-base pressure set-point b)
Optimization of Drag through mean Cpbase c) Optimization of wake fluctuation through RMS of Cpbase. Cpbase is defined as (Cp3 +

Cp4 +Cp5 +Cp6)/4. t∗ is the time non-dimensionalized by the shedding period. The RMS is computed as a windowed average of 17
shedding cycles.

goal of the LSTM model is to accurately forecast future system
states, Cpbase(t), in order for the controller to better optimize
the next actuation (RPM). The LSTM model predicts future
system states, Cpbase(t), which are represented as a vector ar-
ray of size 1×N, where N is the prediction horizon. The input
to the LSTM is an array of size 3×M, where M is the in-
put sequence length. The three rows of the input array are the
past system states (Cpbase(t)), the past actuation (RPM), and
the future actuation (Candidate RPM). Past system states and
past actuation were decided upon as inputs as they provide the
necessary history and feedback to predict future system states
in a closed loop control system. The future actuation input is
used in order for the optimizer to suggest future actuations,
and thus allow the controller optimize the future actuation in
order to achieve the control goal.

The LSTM model is trained offline using time series of
pressure and actuation data. To begin, input and output data are
collected, where the system is randomly actuated between the
minimum and maximum RPM = [1000, 3800] for a set time
interval of 10 minutes, changing RPM every 2 seconds, at a
constant Re= 12500. Pressure and RPM data are collected at a
sampling frequency of 3000Hz. 50% of the data obtained from
the data collection are used for training and 50% are saved for
model validation. This split was empirically tested to be suit-
able and was not optimized. The training data are split into
inputs (3×M) and outputs (1×N). The choice of N and M
is important as the LSTM needs sufficient past information to
model the characteristic time-scale of the flow. The relevant
time scale is that of the vortex shedding cycle-to-cycle vari-
ations and it is found that this requires at least two shedding
periods. Each input and output are normalized to be within
[-1, 1], by their minimum and maximum values.

Adaptive Learning
A strategy is developed so that the model trained for a

given Re can adapt autonomously to flows at different Re con-
ditions. The algorithm is split into two main functions; a con-
tinuous adaptation, and a transfer learning adaptation. The
purpose of the continuous adaptation is to improve controller
performance for small Re changes, and for when the model has
not perfectly captured the dynamics. In order to improve the
controller performance in these scenarios, the model is con-
tinually adapted and trained using feedback data, as seen in
Fig. 4, before the feedback data enters the controller. This
quickly corrects any discrepancies between model prediction

and actual pressure by correcting model errors at the current
conditions.

The purpose of transfer learning adaptation is to improve
controller performance for large Re changes. The algorithm
begins by collecting a small set of data at new conditions
which span the entire actuation space. The model is re-trained
using the pre-trained data as a starting point and adapting to the
new conditions. Through this transfer learning, a higher accu-
racy can be obtained in a shorter amount of time if the data set
used to pre-train the model exhibit similar system dynamics to
the new data set (Torrey & Shavlik, 2010).

RESULTS
The performance of the closed-loop control was

measured by subjecting the controller to: (i) Recovery of
mean-base pressure set-point from perturbation, (ii) drag or
wake fluctuation intensity optimization, and (iii) robustness
test at small and large Re changes, and a difficult control
scenario.

(i) Recovery of Mean-base Pressure Set-point from Pertur-
bation

This experiment tests the controller ability to recover
the system state to a specific value when started at a random
condition, and with naturally occurring perturbations which
come from the turbulent flow development. Additionally,
it tests whether the LSTM is capable of accurately predict-
ing the system dynamics in real time. To confirm these
two capabilities, the controller optimizes the cost function
(minu∈Rn

∥∥Cp f uture(t)−Cpset(t)
∥∥). Figure 2a shows how the

controller is able to keep the short term average of the base
pressure Cpbase(t) (blue) to the prescribed set-point (red).
The optimized cylinder actuation is shown through RPM1
(yellow) and RPM2 (orange). This confirms that the controller
is capable of recovering the mean-base pressure to a set-point
with constant perturbations and that the LSTM accurately
predicts system dynamics real time.

(ii) Drag and Wake Fluctuation Intensity Optimization
This experiment attempts to determine the global

optima of the drag or wake fluctuation intensities
through Cpbase(t). For drag intensity, the mean of
Cpbase(t) is optimized through the cost function:
(minu∈Rn OR maxu∈Rn

∥∥Cp f uture(t)−Cpcurrent(t)
∥∥).

Similarly, for wake fluctuation intensity, the RMS
of Cpbase(t) is optimized through the cost function:
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(minu∈Rn OR maxu∈Rn
∥∥CpRMS f uture(t)−CpRMScurrent(t)

∥∥).
This problem is traditionally difficult since iteration is

necessary to find global optima, which is computationally ex-
pensive (Choi et al., 2008). Sub-optimal control, which stops
iteration early, is faster and less computationally expensive but
can get trapped in local minima and relies heavily on a cost
function. Iteration and sub-optimal solutions are eliminated
by the LSTM since the prediction horizon is computed in one
step and the entire actuation space can be evaluated in one in-
put. By evaluating the entire actuation space, the cost function
is easily optimized to determine the global optima.

The test requires the controller to maximize and
then minimize the mean/RMS of Cpbase(t). Figure
2b shows the max/min (t∗ = 0 − 2500/2500 − 5000)
mean of Cpbase(t). Next, Figure 2c shows the max/min
(t∗ = 200− 750/750− 1300) RMS of Cpbase(t). These two
figures show the controller’s capability to find the global
max/min for both the mean and RMS of Cpbase(t). Figure 6
shows the results of the grid search, confirming the locations
of the optima and proving that the global optima were found
and accurately captured in the model.

(iii) Control Robustness
One important challenge for robust control is the sensitiv-

ity of the system dynamics to changes in Re. The challenge is
resolved by adapting the LSTM to unseen conditions. Three
tests are done to show how effective the adaptive learning al-
gorithm is. The first test is to use continuous adaptation in a
region in the parameter space that is difficult to control, such
as high gradients of pressure with respect to RPM. Discerning
small pressure differences in large pressure gradient regions is
difficult in real experimental systems due to the compounding
effects of sensor noise and model inaccuracy. Fig. 7 shows
how the controller performs when asked to discern small pres-
sure differences without adaptation on the left and with adap-
tation on the right. The adaptive learning algorithm improves
controller accuracy in challenging situations as the controller
is better able to regulate the pressure response to the control
goal.

The second test is to use continuous adaptation when
making small Re changes to see if the controller can re-
cover mean-base pressure set-point to a constant value. With-
out adaptation, this is difficult as dynamics change when Re
changes, and thus the LSTM model will be inaccurate. Figure
8 shows how the controller quickly reacts to a 10% change in
Re and recovers the pressure back to the desired set-point, at
a different Re. With a 10% change in Re, a 100% change in
RPM was needed to maintain the same pressure, which shows
the system sensitivity to Re changes and the necessity for con-
tinuous adaptation in real-world systems when Re is not con-
stant.

Finally, a recovery of mean-base pressure set-point test
was run at Re = 22250, a significantly different Re compared
to Re = 12500 which the model was previously trained on, to
see how transfer adaptive learning performs. This procedure
includes collecting a small set of data and using it to retrain the
model on the new conditions. The set-point test is run before
and after re-training to show the difference in performance.
Figure 3 shows how the model initially performs poorly at the
new Re when the controller is asked to regulate Cpbase(t). Af-
ter adaptive learning, the controller performs well at regulat-
ing the pressure to the desired set-point. This shows that the
model has indeed learned the new dynamics associated with
the unseen conditions. The time to train depends on the in-
tegral scales of the flow, the size of the actuation space, and
hardware implementation. In this implementation, with an un-
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Figure 3. Closed-Loop Controller Adaptive Learning Test.
Cpbase is defined as (Cp3 +Cp4 +Cp5 +Cp6)/4. t∗ is the
time non-dimensionalized by the shedding period.

actuated vortex shedding frequency of 60Hz, the model learns
the new dynamics quickly (60s) based on its experience learn-
ing from the training set at a different Re. If trained without
prior learning, it would need at least one order of magnitude
larger training time.

CONCLUSIONS
A methodology has been presented for achieving closed-

loop turbulent flow control using Machine Learning. MPC
optimization time was improved through the use of LSTMs,
by eliminating all sources of iteration in traditional MPC.
Recovery of mean-base pressure set-point from perturbation,
and drag or wake fluctuation intensity optimizations were per-
formed. In addition, an adaptive learning algorithm was intro-
duced to make the control robust to changing Re and increase
accuracy in difficult to control scenarios. The novelty of this
work is the development of a methodology which achieves ro-
bust closed-loop feedback control of an experimental high Re
turbulent fluid system. This can help advance the field towards
the control of complex systems in industry.

Future challenges to be addressed include increasing ac-
tuation degrees of freedom, and increasing MPC cost function
complexity by including actuator power.
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Figure 4. MPC Controller Diagram. The main feedback control loop works by measuring previous system states and actuations, and
feeding them back into the controller, where the controller optimizes future actuations. The adaptive learning loop uses feedback data
to update the model on current conditions to improve robustness and accuracy.

Figure 5. LSTM Architecture. The LSTM uses forget, input and output gates to control the flow of information.
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Figure 6. Grid Search Results for Mean and RMS Base Pressure, Cpbase = (Cp3 +Cp4 +Cp5 +Cp6)/4.
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Figure 7. Pressure Response of Setpoint Test in High Gradient Location without (left) and with (right) Adaptive Learning. Cpbase is
defined as (Cp3 +Cp4 +Cp5 +Cp6)/4. t∗ is the time non-dimensionalized by the shedding period.
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