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ABSTRACT
The dominant paradigm in turbulent wall flows is that the

mean velocity near the wall, when scaled on wall variables,
is independent of the friction Reynolds number Reτ . This
paradigm faces challenges when applied to fluctuations but
has received serious attention only recently. Here, we present
a promising perspective, and support it with data, that fluc-
tuations displaying non-zero wall-values, or near-wall peaks,
are bounded for large values of Reτ , owing to the natural
constraint that the dissipation rate is bounded. Specifically,
Φ∞−Φ = CΦRe−1/4

τ , where Φ represents the maximum value
of any of the following quantities: energy dissipation rate,
turbulent diffusion, fluctuations of pressure, streamwise and
spanwise velocities, squares of vorticity components, and the
wall values of pressure and shear stresses; the subscript ∞ de-
notes the bounded asymptotic value of Φ and the coefficient
CΦ depends on Φ but not on Reτ . Moreover, there exists a scal-
ing law for the maximum value in the wall-normal direction of
high-order moments, of the form 〈ϕ2q〉1/q

max = αq−βqRe−1/4
τ ,

where ϕ represents the streamwise or spanwise velocity fluctu-
ation and αq and βq are independent on Reτ . Excellent agree-
ment with available data is observed. A stochastic process for
which the random variable has the form just mentioned, re-
ferred to here as the ‘linear q-norm Gaussian’, is proposed to
explain the observed linear dependence of αq on q.

Introduction
Ever since a theory for turbulent shear flows began to de-

velop, the dominant paradigm has been that the flow near the
wall scales solely on ν and the wall shear stress, τw. This
theme has been remarkably successful for the mean velocity,
as evidenced by the law of the wall. Similar expectations for
turbulent intensities are assumed in engineering models. In
practice, this means that turbulence fluctuations, after suitable
normalization by the wall stress and viscosity, would be invari-
ant with respect to the friction Reynolds number Reτ = uτ δ/ν ,
where uτ ≡ τ1/2

w is the friction velocity and δ is the flow thick-
ness. Nevertheless, as found in direct numerical simulations

(DNS) and in laboratory experiments (EXP), wall-normalized
fluctuating quantities increase with Reτ .

These include (almost) all quantities with wall-values that
are non-zero or display near-wall peaks—in particular, in the
wall-components of energy dissipation (ε+

x−w and ε+
z−w), dif-

fusion (D+
x−w and D+

z−w), root-mean-square (rms) vorticity
(ω ′+

x−w and ω ′+
z−w), and rms wall shear stress (τ ′+x−w and τ ′+z−w)

and pressure (p′+w ), absorbing the fluid density in the definition
of pressure; the list also includes the near-wall intensity peaks
of velocities (u′+p occurring at y+ ≈ 15 and w′+p occurring at
y+ ≈ 45) and pressure fluctuation (p′+p occurring at y+ ≈ 30).
We adopt the standard convention that the superscript + in-
dicates normalization by uτ and ν , and the superscript prime
represents the rms fluctuation; subscript w represents the wall
and p stands for the peak value near the wall, and u,v,w for
fluctuation velocities in the streamwise (x), wall-normal (y),
and spanwise/azimuthal (z) directions; where two letters are
used as subscripts, they indicate wall (w) values and the direc-
tion x, y or z.

Law of Bounded dissipation and the Re−1/4
τ de-

fect power law
We present a broad explanation for the growth of quanti-

ties just mentioned, on the basis of the law for bounded wall-
dissipation advanced by Chen & Sreenivasan (2021), hereafter
as CS. We recall that the latter is expressed as

ε+
x−∞− ε+

x−w = Cε Re−1/4
τ (1)

where εx = ν〈|∇u|2〉 is the streamwise wall-dissipation (〈·〉 de-
notes average), Cε is a constant independent of the Reynolds
number and εx−∞ is the asymptote as Reτ →∞ of εx−w, which
is the wall value of εx. After normalization using u4

τ/ν , ε+
x−∞

is thought to be bounded by 1/4, which is the constraint im-
posed by the exact maximum production. CS verified this
scaling by comparisons with available data, and also pro-
vided the following physical rationale for (1). What con-
trols the turbulence peak values at any Reynolds number is
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the peak energy dissipation, which equals the maximum pro-
duction only at infinitely large Reynolds number; and at any
finite Reynolds number, it is the departure of the dissipation
rate from its limiting value that determines the finite Reynolds
number dependence. Specifically, the peak dissipation falls
short of the peak energy production of 1/4 at finite Reynolds
number by transmitting outwards in the amount εd = u3

τ/η0
where η0 the outer flow Kolmogorov length scale, and hence
ε+

d = εd/(u4
τ/ν) ∼ Re−1/4

τ leading to equation (1). For more
details of the argument, one may consult CS.

A natural generalization of the above result is

Φ∞−Φ = CΦRe−1/4
τ , (2)

where Φ is any of the quantities ε+
x−w, ε+

z−w, D+
x−w, D+

z−w,
ω ′+2

z−w, ω ′+2
x−w, τ ′+2

x−w, τ ′+2
z−w, p′+w , p′+p , u′+2

p and w′+2
p , the sub-

script ∞ denotes their bounded asymptotic values and the coef-
ficient CΦ depends on the quantity Φ in question but not on the
Reynolds number. We also note that ε+

x−w = τ ′+2
x−w = ω ′+2

z−w =
〈(∂u+/∂y+)2〉w and ε+

z−w = τ ′+2
z−w = ω ′+2

x−w = 〈(∂w+/∂y+)2〉w
due to the no-slip wall condition (i.e. ∇u = ∂yu and ∇w = ∂yw
at the wall), while D+

x−w = ε+
x−w and D+

z−w = ε+
z−w because

of the Reynolds stress balances at the wall. Moreover, we ar-
gue the maximum values of moments would also be bounded
as Reτ → ∞, and that the finite-Reτ dependence is the same
1/4-power. Accordingly, we write

〈ϕ2q〉1/q
max = αq−βqRe−1/4

τ (3)

where ϕ represents either u or w fluctuations, and αq (for q =
1− 5) represents different asymptotes for different q’ when
Reτ → ∞; βq is independent of Reτ . Note that for q = 1, α1 =
Φ∞ and β1 = CΦ in (2).

Figure 1 shows Reτ -variations for the wall values of dis-
sipations ε+

x−w and ε+
z−w (top panels) and near-wall peaks of

〈u2q〉+1/q and 〈w2q〉+1/q for q = 1−5 (bottom panels). Solid
lines denote the Re−1/4

τ defect power law fittings by (2) for dis-
sipations and (3) for moments, where values of αq, shown in
the figure 2, are of particular interest because they represents
the asymptotic values of the moments.

Linear q-norm Gaussian (LQNG) process
In this section, we show that the linear q-dependence in

figure 2 can result from a Gaussian random variable via an
exponential transformation. Let us first define the q-norm for
a (random) variable φ as φq = 〈φ q〉1/q, where 〈·〉 represents the
expectation value. If φq depends linearly on q, it then satisfies

φq = ln(χq), (4)

where χq is the q-norm of a log-normal variable χ , i.e. χ = eκ

with κ Gaussian distributed. This is demonstrated as follows.
For a Gaussian variable κ with its mean µ and variance

2σ , one has

ln(〈eqκ 〉) = µq+σq2. (5)

Accordingly,

χq = 〈χq〉1/q = 〈eqκ 〉1/q = [eµq+σq2
]1/q = eµ+σq; (6)

φq = ln(χq) = µ +σq. (7)

We may refer the random variable φ which has a linear
q-norm (7) as the ‘linear q-norm Gaussian’ (LQNG) process
generated by the Gaussian seed κ . The above procedure is
summarized as follows:

κ E−→χ Q−→χq
E−1−→φq

Q−1

−→φ ; φ = Q−1E−1QE(κ). (8)

Here, E and Q indicate operations of exponential transform
and q-norm, respectively, which are non-commutable for ran-
dom variables; and the superscript−1 indicates the inverse op-
eration (supposing φ is determined by its moments). In other
words, the LQNG process satisfies the following operator-
reflection symmetry

E◦Q(φ) = Q◦E(κ). (9)

If φ and κ are non-random, it is trivial that φ = κ; instead,
φ and κ here are random variables, and by assigning κ as a
Gaussian variable, we obtain a linear dependence of φq on q,

For wall turbulence, the asymptotes for the near-wall
peaks of 〈u2q〉1/q and 〈w2q〉1/q when Reτ →∞ are LQNG pro-
cesses. That is, substituting φ = u2 in (7) we have

αu,q = µu +σuq (10)

where µu ≈ 5.5 and σu ≈ 5.9 according to figure 2(left). Sim-
ilarly, substituting φ = w2 in (7) we have

αw,q = µw +σwq (11)

where µw ≈ 0 and σw ≈ 3.9 according to figure 2(right). The
fact that µw ≈ 0 may reflect the absence of inactive motion in
the w-component of the velocity.

Conclusion
The paper shows that the averages of turbulent fluctua-

tions which possess non-zero wall values or near-wall peaks
are bounded and follow a universal Re−1/4

τ defect law. The
paper also extends the same argument to wall-normal peaks in
high-order (even) moments of velocity fluctuations.
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Figure 1. (top) Reτ -variations of wall dissipation rates after normalization in viscous units: streamwise velocity component εx−w -
left, and spanwsie velocity component εz−w - right. (bottom) Reτ variations of the maximum u (left) and w (right) moments near the
wall. Solid symbols represent the DNS channel data of Lee & Moser (2015); open symbols are EXP TBL data by Hutchins et al.
(2009), extracted from Meneveau & Marusic (2013). Dashed lines from the Gaussian logarithmic model by Meneveau & Marusic
(2013), while solid lines denote the Re−1/4

τ defect power law fittings by (2) for dissipations, i.e. εx−w = 1/4− 0.42Re−1/4
τ and

εz−w = 0.13−0.31Re−1/4
τ , and (3) for moments, with αq shown in the figure 2.
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Figure 2. Variations with q of αq for the moments of u (left) and w (right). Solid lines indicate linear dependence, explained in (10)
and (11), given by the LQNG process defined in (8).
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