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ABSTRACT
Turbulent circular pipe flows under axial system rotation

are investigated using direct numerical simulation (DNS) for a
wide range of rotation numbers of Rob = 0−20. The charac-
teristics of the flow field are investigated in both physical and
spectral spaces. It is observed that large-scale secondary flows
are induced by the axial rotation, which enhance the magni-
tudes of the radial and azimuthal Reynolds normal stresses. In
response to the axial system rotation imposed, the pressure-
strain and Coriolis production terms become the leading terms
in the budget balance of these two Reynolds normal stresses.
It is also interesting to observe that the axial rotation makes
the near-wall streaky structures tilted and elongated, and sup-
presses the sweep events systematically which further impede
the formation of hairpin structures.

INTRODUCTION
Turbulent flow within a circular pipe subjected to system

rotation represents an interesting topic with important applica-
tions in areas such as internal blade cooling of gas turbines,
and rotary machines. The system rotation of the circular pipe
may occur either radially about a diameter of the pipe, or
axially about the centre line of the pipe. In response to ei-
ther radial or axial system rotation, Coriolis force is induced
which acts on the fluid flows to dramatically alter the turbu-
lence statistics and coherent structures, even resulting in local
laminarization of the flow. As is well known, turbulent flow
through a stationary (non-rotating) circular pipe represents a
classical research subject, which has been extensively stud-
ied using DNS by Eggels et al. (1994); Wu & Moin (2008);
Chin et al. (2010). By contrast, the number of DNS studies
on either radially and axially rotating circular pipe flows are
still very limited in the literature. Recently, Zhang & Wang
(2019) carried out a DNS study of turbulent flow in a circu-
lar pipe subjected to radial system rotation. They observed
streamwise-elongated large-scale counter-rotating vortices and
a Taylor-Proudman region at low rotation numbers. Following
our previous DNS study of radially-rotating pipe flow, here we
extend the research to DNS of axially-rotating pipe flows.

In their series of rotating pipe experiments, Reich & Beer
(1989) observed that both skin friction coefficient and turbu-
lence level decreased considerably as the rotation number in-
creased. Meanwhile, according to the trend of the mean ax-
ial velocity profile, the flow became increasingly laminarized
with an increasing speed of axial system rotation. Orlandi &
Fatica (1997) carried out a DNS study of an axially-rotating

circular pipe flow, and confirmed these experimental research
findings of Reich & Beer (1989). They also observed that the
turbulence statistics were sensitive to the tilting of the near-
wall axial vortical structures in the rotating direction. Orlandi
& Ebstein (2000) further studied the impact of axial system
rotation on the budget balances of TKE, Reynolds stresses and
enstrophy of the turbulent pipe flow using DNS. They reported
that for the Reynolds stresses, the pressure-strain and convec-
tion terms were highly dependent on the rotation number.

Based on a thorough literature review, it is noticed that de-
tailed DNS studies of the axial-rotating circular pipe flow are
still rather limited, and in-depth understanding of the Coriolis
force effects on the flow physics and coherent structures needs
to be developed. In view of this, we aim to conduct a sys-
tematic DNS study of turbulent pipe flows subjected to axial
system rotation for a wide range of rotation numbers.

TEST CASE AND NUMERICAL ALGORITHM
Figure 1 schematically illustrates a circular pipe under ax-

ial system rotation. Three directions of the cylindrical coordi-
nates (i.e. radial, azimuthal and axial directions) are denoted
as r, β and z, and the corresponding velocity components are
represented as ur, uβ and uz, respectively. The pipe length is
Lz = 30πR, where R is the pipe radius. The flow field in the
domain is fully developed with a periodic boundary condition
applied to the axial direction and no-slip condition imposed
on the solid surface. In order to study the axially-rotating ef-
fect, a constant counter-clockwise angular speed (Ωz) is im-
posed in the streamwise (z) direction, and the rotation num-
ber (Rob = 2ΩzR/Ub) ranges drastically from 0 (non-rotating
case) to 20, at a fixed Reynolds number of Reτ = uτ R/ν = 180.
Here, Ub is the bulk mean velocity, uτ is the wall friction ve-
locity, and ν is the kinematic viscosity of the fluid. The gov-
erning equations for an incompressible flow with respect to an
axially-rotating reference frame are

∇ · u⃗ = 0 , (1)

∂ u⃗
∂ t

+ u⃗ ·∇u⃗ =−Πêz −
1
ρ

∇p+ν∇
2u⃗+ F⃗ , (2)

where u⃗, ρ and p are the velocity, density and pressure of the
fluid, respectively. Π represents the constant mean axial pres-
sure gradient, and êz is the base unit vector of the z-direction,
with |êz| ≡ 1. In response to the axial rotation, two components
of the Coriolis force (F⃗) appear in the radial and azimuthal di-
rections, i.e. Fr = 2Ωzuβ and Fβ =−2Ωzur.
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Figure 1. Schematic of turbulent pipe flow subjected to axial
system rotation in cylindrical coordinate system. Two Coriolis
force components are Fr and Fβ .

Table 1. Flow parameters for seven test cases.

Case # Ωz Rob RoA
b RoA

τ ReA
τ

1 0 0 0 0 179.94
2 1 2 1.83 29.47 179.84
3 2 4 3.67 58.86 180.09
4 3 6 5.53 88.38 179.91
5 5 10 9.79 147.41 179.77
6 7 14 14.95 206.15 179.96
7 10 20 22.45 295.72 179.22

The simulations were performed with a spectral-element
code “Semtex” by Blackburn & Sherwin (2004), which is
highly-accurate in algorithm suitable for conducing DNS. It
was developed using C++ programming language, and paral-
lelized following the message passing interface (MPI) stan-
dard. For the mesh, a quadrilateral spectral-element method
was used to divide the cross-section of the pipe into 420 ele-
ments with each element discretized spatially with 8th-order
Gauss-Lobatto-Legendre Lagrange interpolants. All physical
quantities are expanded into the spectral space using Fourier
series with 1800 modes in the z-direction. The grid spacing is
uniform in the streamwise direction with ∆z+ = 9.425, and
varies in the azimuthal and radial directions with R∆β+ =
1.416-5.122, ∆r+ = 0.147 at the first node off the wall and
∆r+ = 0.942 at the pipe centre.

Table 1 compares the nominal and actual flow param-
eters derived from DNS results of the different test cases.
Superscript “A” denotes the actual results. Roτ represents
rotation number defined based on the wall friction velocity
as Roτ = 2ΩzR/uτ . For each simulated case, 500 instanta-
neous snapshots of the flow fields over 40 large-eddy turnover
times (LETOTs, defined as R/uτ ) were collected with approx-
imately 1.1 TB data stored on a server. Here, uτ is defined
as

√
−ΠR/2ρ . All DNS calculations were conducted on the

WestGrid (Western Canada Research Grid) supercomputers.
To facilitate the analysis and discussion, an instantaneous

turbulence variable Φ is decomposed as Φ = ⟨Φ⟩+Φ′ where
⟨Φ⟩ is the temporal- and spatial-averaging component along
the homogenous (z) direction, and Φ′ represents fluctuating
component. Symbol y denotes a dimensionless coordinate
measured from the wall, i.e. y = 1− r/R. Furthermore, in
order to conduct a near-wall analysis in analogous to a tur-
bulent plane channel flow, a dimensionless wall coordinate is
introduced, i.e. y+ = (R− r)uτ/ν .

RESULTS AND DISCUSSIONS
Figure 2 shows contours of the instantaneous axial veloc-

ity u+z and instantaneous axial vorticity ω+
z in the cross-stream

plane for the non-rotating (Rob = 0) and most rapidly-rotating
(Rob = 20) flows. The left panel shows the instantaneous axial

(a) Non-rotating pipe flow (Rob = 0)

(b) Axially-rotating pipe flow (Rob = 20)
Figure 2. Cross-stream distribution of instantaneous axial
velocity u+z (left half-panel) and instantaneous axial vorticity
ω+

z (right half-panel) of the non-rotating (Rob = 0) and most
rapidly-rotating (Rob = 20) flows. White Arrows represent the
counter-clockwise-rotating direction. All contours are mapped
at the same axial location (z/R = 15π) and time instant (20.38
LETOTs). All values are non-dimensionalized by uτ .

velocity u+z , while the right part shows the instantaneous ax-
ial vorticity ω+

z . As is clear from Fig. 2(a), in a non-rotating
pipe flow, the flow structures show “mushroom patterns” in
the near-wall region where several couples of small counter-
rotating vorticities are observed. In Fig. 2(b), as the rotating
speed increases to Rob = 20, a large rotating vortical structure
appears at the pipe centre, and both the “mushroom patterns”
and vorticities are stretched along the azimuthal direction.

Figure 3 compares bulk mean velocity U+
b and volume-

averaged TKE k+m of different rotation numbers Rob. In
Fig. 3(a), the U+

b profile peaks at Rob = 2, with a magnitude
that is 10.01% higher than that of the non-rotating pipe flow.
As the rotation number increases beyond 6, the magnitude of
U+

b decreases apparently. Finally, at Rob = 20, the U+
b value is

reduced by 10.33% in comparison with that of the non-rotating
flow. From Fig. 3(b), The value of k+m increases as the rotation
number increases, and reaches its maximum at Rob = 14. It
will be explained later that the axial rotation enhances the mag-
nitudes of ⟨u′zu′z⟩+ and ⟨u′

β
u′

β
⟩+ which subsequently make a

positive contribution to the k+m value.
Figure 4 compares the profiles of the mean axial veloc-

ity ⟨uz⟩+, mean azimuthal velocity r⟨uβ ⟩+/R and mean axial
vorticity ⟨ωz⟩+ with respect to the wall-normal distance (y) of
all seven rotation numbers tested. As is evident from Fig. 4(a),
the ⟨uz⟩+ profile is axial-symmetrical for the non-rotating pipe
flow, and varies non-monotonically with an increasing Rob
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(a) Bulk mean velocity U+
b

(b) Volume-averaged TKE k+m
Figure 3. Profiles of bulk mean velocity U+

b and volume-
averaged TKE k+m with respect to the rotation number Rob.
The values of U+

b and k+m have been non-dimensionalized by
uτ and u2

τ , respectively.

value. At the pipe centre, the peak value of ⟨uz⟩+ increases
when rotating speed rises from Rob = 0 to 6, and reaches its
maximum at Rob = 6 with a magnitude that is 40.05% higher
than that of the non-rotating pipe flow. As Rob increases from
6 to 20, the peak value of ⟨uz⟩+ reduces, which however is
still 18.48% larger than that at Rob = 0. In addition, it is inter-
esting to observe from Figs. 4(b) and (c) that both r⟨uβ ⟩+/R
and ⟨ωz⟩+ reach their maxima at Rob = 10, and the peak of
r⟨uβ ⟩+/R is always located around y ≈ 0.4 where the mean
axial vorticity ⟨ωz⟩+ is zero identically.

Figure 5 compares the profiles of Reynolds normal
stresses ⟨u′zu′z⟩+, ⟨u′ru′r⟩+ and ⟨u′

β
u′

β
⟩+ at seven different rota-

tion numbers Rob tested. As shown in Fig. 5(a), the profile of
⟨u′zu′z⟩+ peaks at y= 0.083 (or y+ ≈ 15) in the near-wall region
for a non-rotating pipe flow. As soon as the axial rotation is
imposed, the magnitude of ⟨u′zu′z⟩+ reduces monotonically. In
response to the effect of the mean secondary flow, the peak of
⟨u′zu′z⟩+ moves towards the pipe centre as Rob increases. The
lowest and highest peak values occur at Rob = 4 and Rob = 14,
respectively, which are 15.77% and 6.87% lower than that of
the non-rotating pipe flow (at Rob = 0).

As is clear in Fig. 5(b), in contrast to the monotonic
trend of ⟨u′ru′r⟩+ in the near-wall region of the pipe, the pro-
file of ⟨u′ru′r⟩+ varies non-monotonically at the pipe centre as
the rotation number increases, and reaches its maximum at
Rob = 14. Figure 5(c) shows that the profile of ⟨u′

β
u′

β
⟩+ is

similar to that of ⟨u′ru′r⟩+ in the azimuthal direction, with the
maximum peak also occurring at Rob = 14. In response to
the system rotation imposed, the secondary flows are induced,
which tend to suppress ⟨u′zu′z⟩+ but enhance the magnitudes
of ⟨u′ru′r⟩+ and ⟨u′

β
u′

β
⟩+ in most pipe regions until the rota-

tion number reaches Rob = 14. As a result, the TKE level (as

〈
〉

(a) Mean axial velocity ⟨uz⟩+

〈
β
〉

(b) Mean azimuthal velocity r⟨uβ ⟩+/R
〈ω

〉

(c) Mean axial vorticity ⟨ωz⟩+

Figure 4. Profiles of mean axial velocity ⟨uz⟩+, mean az-
imuthal velocity r⟨uβ ⟩+/R and mean axial vorticity ⟨ωz⟩+ at
seven tested rotation numbers. In panels (b) and (c), pink
vertical-dashed lines point to the location of zero ⟨ωz⟩+ at
y = 0.4. All values have been non-dimensionalized by uτ .

shown in Fig. 3(b)) is enhanced significantly. As Rob increases
above 14, the magnitudes of ⟨u′ru′r⟩+ and ⟨u′

β
u′

β
⟩+ decrease

with Rob, leading to a reduction in the TKE level.
Figure 6 compares the profiles of axial pre-multiplied ve-

locity spectrum k+z Ẽ+
zz calculated along the streamwise direc-

tion at wall-normal position y+ ≈ 15. The 1D axial energy
spectrum of velocity fluctuations is defined as

Ẽi j = û′iû
′
j
∗
+ û′i

∗
û′j , (3)

where a hat denotes Fourier transform and an overbar repre-
sents time averaging. The axial wavenumber is determined as
kz = nzkz0 for nz ∈ [-Nz/2, Nz/2-1] where kz0 = 2π/Lz is the
smallest positive wavenumber. The axial wavelength is de-
fined as λz = 2π/kz, non-dimensionalized as λ+

z = λzuτ/ν .
As is evident from Fig. 6, the mode of k+z Ẽ+

zz (correspond-
ing to the characteristic length scale of the most energetic ed-
dies) is located in the region of λ+

z ∈ [600, 2000] for a non-
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〈
〉

(a) Axial Reynolds normal stress ⟨u′zu′z⟩+

〈
〉

(b) Radial Reynolds normal stress ⟨u′ru′r⟩+

〈
β

β
〉

(c) Azimuthal Reynolds normal stress ⟨u′
β

u′
β
⟩+

Figure 5. Profiles of Reynolds normal stresses ⟨u′zu′z⟩+,
⟨u′ru′r⟩+ and ⟨u′

β
u′

β
⟩+ for different rotation numbers Rob. In

panels (a) and (b), pink arrows point to the direction of an in-
creasing rotating effect. All values are non-dimensionalized
by u2

τ .

rotating pipe flow. In response to the axial system rotation,
the peak value decreases dramatically as Rob increases. At the
highest rotation number Rob = 20, the magnitude is reduced
by 63.02% in comparison with that at Rob = 0. Meanwhile,
the mode of k+z Ẽ+

zz moves towards larger wavelengths as the
rotation number increases.

To refine our investigation of the rotating impact on the
Reynolds normal stresses, the transport equation of Reynolds
stresses ⟨u′iu′j⟩ can be further studied, which is expressed as

Hi j −Pi j −Πi j + εi j −Dt
i j −Dp

i j −Dv
i j −Ci j = 0 . (4)

Here, Hi j , Pi j , Πi j, εi j, Dt
i j , Dp

i j , Dv
i j and Ci j represent the

convection, production, pressure-strain, viscous dissipation,
turbulent diffusion, pressure diffusion, viscous diffusion and
Coriolis production terms, respectively. From Fig. 1, it is un-
derstood that the two components of the Coriolis force are
in the radial and azimuthal directions under the axial rota-
tion. Because no Coriolis force component appears in the

λ

Figure 6. Profile of axial pre-multiplied velocity spectrum
k+z Ẽ+

zz for 7 different rotation numbers, calculated along the
streamwise direction at wall-normal position y+ ≈ 15. Pink
arrow indicates the direction of an increasing rotation number.

Π

ε

〈
〉

(a) Non-rotating pipe flow (Rob = 0)

〈
〉

(b) Axially-rotating pipe flow (Rob = 6)
Figure 7. Budget balance of the radial Reynolds nor-
mal stress ⟨u′ru′r⟩+ of the non-rotating (Rob = 0) and ro-
tating (Rob = 6) flow cases. All budget terms are non-
dimensionalized by u3

τ/R.

axial direction, the Coriolis production term is zero identi-
cally for ⟨u′zu′z⟩. Therefore, we only analyze budget balance
of ⟨u′ru′r⟩ and ⟨u′

β
u′

β
⟩ here, and the Coriolis production terms

are Crr = 4Ωz⟨u′ru′
β
⟩ and Cββ =−4Ωz⟨u′ru′

β
⟩, respectively.

As is shown in Fig. 7(a), the budget balance of ⟨u′ru′r⟩+
is mostly dominated by −Π+

rr, ε+rr and −Dp+
rr in the near-wall

region of the pipe for the non-rotating pipe flow. Specifically,
−Dp+

rr and −Π+
rr behave as source terms in the inner region

for y ≤ 0.071 and in the outer region for y ≥ 0.071, respec-
tively. In contrast to the non-rotation pipe flow patterns shown
in Fig. 7(a), it is apparent in Fig. 7(b) that the budget balance
of ⟨u′ru′r⟩+ is dominated by −Π+

rr, −Dp+
rr and −Crr at Rob = 6.

Owing to the system rotation imposed, the Coriolis production
term −Crr appears as a new source term which pumps a large
amount of turbulence energy into ⟨u′ru′r⟩+. The pressure-strain
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〈
β

β
〉

ββ

ββ

Π
ββ

ββ

ββ

ε
ββ

ββ

ββ

(a) Non-rotating pipe flow (Rob = 0)

〈
β

β
〉

(b) Axially-rotating pipe flow (Rob = 6)
Figure 8. Budget balance of the azimuthal Reynolds nor-
mal stress ⟨u′

β
u′

β
⟩+ of the non-rotating (Rob = 0) and ro-

tating (Rob = 6) flow cases. All budget terms are non-
dimensionalized by u3

τ/R.

term functions completely as a sink term in the near-wall re-
gion up to y = 0.872. It is noticed that the peak values of −Π+

rr
and −Dp+

rr increase almost ninefold in the inner region com-
pared with those of the non-rotating pipe flow.

Figure 8 compares budget balances of the azimuthal
Reynolds normal stress ⟨u′

β
u′

β
⟩+ of the non-rotating (Rob = 0)

and rotating (Rob = 6) pipe flow cases. As is clear in Fig. 8(a),
for the non-rotating pipe flow, the budget balance of ⟨u′

β
u′

β
⟩+

is primarily dominated by ε
+
ββ

and −Dv+
ββ

in the inner region

of the pipe. However, in the outer region, −Π
+
ββ

and ε
+
ββ

make primary contributions to ⟨u′
β

u′
β
⟩+. The system rotation

changes the budget balance of ⟨u′
β

u′
β
⟩+ considerably. As is ev-

ident from Fig. 8(b), at Rob = 6, the Coriolis production term
−Cββ becomes the dominant sink term to balance with −Π

+
ββ

.
By comparing Fig. 7(b) with Fig. 8(b), it is clear that the Cori-
olis production term is able to transfer turbulence energy from
⟨u′

β
u′

β
⟩+ to ⟨u′ru′r⟩+, simply because Crr ≡−Cββ .

Figure 9 compares contours of joint probability density
function (JPDF) P(u′z , -u′r) at the wall-normal position y+ ≈
15 of the pipe for the non-rotating (Rob = 0) and rotating
(Rob = 20) flows. To compare with the familiar turbulent
plane-channel flows, the negative of the instantaneous radial
velocity fluctuation u′r is used here. In Figs. 9(a) and (b), the
Q2 and Q4 quadrants relate to the ejection (featuring u′z < 0
and -u′r > 0) and sweeping (featuring u′z > 0 and -u′r < 0)
events, respectively. It is evident that as the rotation number
increases from Rob = 0 to 20, the ejection events tend to pro-
duce high intensities with a low probability, while the sweep
events show an opposite trend. Lower intensities of the sweep
events further result in a suppression in the formation of hair-
pin structures under the influence of the axial system rotation.

Figure 10 compares instantaneous streaky structures

(a) Non-rotating pipe flow (Rob = 0)

(b) Axially-rotating pipe flow (Rob = 20)
Figure 9. Contours of JPDF P(u′z , -u′r) at wall-normal po-
sition y+ ≈ 15 of the pipe for the non-rotating (Rob = 0) and
rotating (Rob = 20) flows. All contours have been split into
four quadrants (Q) by black solid lines.

(demonstrated based on u′z
+) in the β -z plane at the wall-

normal position y+ ≈ 15 for the non-rotating (Rob = 0) and
rotating (Rob = 20) flows. The axial domain is arbitrarily se-
lected at z/R ∈ [0,10]. In Fig. 10(a), the positively (indicated
by red color) and negatively (indicated by blue color) fluc-
tuating streaks alternate in the azimuthal direction in a non-
rotating pipe flow. It is observed that the axial length scales of
the negatively fluctuating streaks are apparently longer than
those of the positively fluctuating streaks. By contrast, the
azimuthal length scales of the positively fluctuating streaks
are wider than those of the negatively fluctuating streaks. As
shown in Fig. 10(b), at Rob = 20, the negatively fluctuating
streaks are elongated along the axial direction. The period (or
spacing between two adjacent negatively fluctuating streaks)
becomes greater in the azimuthal direction in response to the
system rotation imposed. It is also interesting to observe that
the streaky structures are tilted, a physical feature that relates
to the secondary flows shown previously in Fig. 2(b). In con-
trast with the negatively fluctuating streaks, a reduction on the
positively fluctuating streaks is observed at Rob = 20. It indi-
cates that axial system rotation tends to impede the formation
of the hairpin structures by suppressing the sweep events and
to laminarize the flow field which is consistent with the obser-
vation in Fig. 9(b).

Figure 11 compares instantaneous axial vorticity fluctua-
tion (ω ′

z
+) patterns in the β -z plane at y+ ≈ 15 for the non-

rotating (Rob = 0) and rotating (Rob = 20) flows. For the non-
rotating pipe flow shown in Fig. 11(a), numerous small-scale
structures are seen in the β -z plane. However, in response to
the axial system rotation, these small-scale turbulence struc-
tures are stretched along the axial direction at Rob = 20 and
tilted slightly along the azimuthal direction, a pattern that is
consistent with the observation of Fig. 10(b).
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(a) Non-rotating pipe flow (Rob = 0)

(b) Axially-rotating pipe flow (Rob = 20)
Figure 10. Contours of instantaneous axial velocity fluctu-
ations (u′z

+) in the β -z plane at wall-normal position y+ ≈ 15
for the non-rotating (Rob = 0) and rotating (Rob = 20) flows.

CONCLUSIONS
Turbulent flow confined within a circular pipe subjected

to axial rotation has been studied using DNS. To conduct a
thorough investigation of the Coriolis force effect on the flow
field, a wide range of rotation numbers varying from Rob = 0
to 20 have been tested. In response to the axial system rota-
tion tested, secondary flow in form of a single counter-rotating
vortex is induced at the pipe centre. As rotation number Rob
increases, a maximum of ⟨uz⟩+ is observed at the pipe cen-
tre at Rob = 6. As Rob further increases above 6, the system
rotation tends to weaken ⟨uz⟩+. It is also interesting that the
peak position of the mean azimuthal velocity r⟨uβ ⟩+/R is in-
dependent of Rob, which occurs at y≈ 0.4 where ⟨ωz⟩+ is zero
identically.

As the rotation number increases, the secondary flows ad-
versely influence the magnitude of ⟨u′zu′z⟩+ in the near-wall
region and shift the ⟨u′zu′z⟩+ peak towards the pipe centre. The
values of ⟨u′ru′r⟩+ and ⟨u′

β
u′

β
⟩+ increase in most pipe regions

but decrease when Rob goes beyond 14, making the dominant
contributions to the TKE level of the flow. The magnitude of
k+z Ẽ+

zz starts to decrease as soon as the axial rotation is im-
posed. This indicates that the axial rotation tends to suppress
the strength of axial turbulent motions, and the characteristic
wavelength of the axial turbulent structures enlarges as the ax-
ial system rotation speeds up.

It is observed that the Coriolis production and pressure-
strain terms are the dominant terms in the budget balances of
⟨u′ru′r⟩+ and ⟨u′

β
u′

β
⟩+ in the outer region of the pipe under an

axial system rotation. The function of the Coriolis force is
to shift TKE between ⟨u′ru′r⟩+ and ⟨u′

β
u′

β
⟩+, simply because

Crr = −Cββ . In response to the system rotation imposed, the
near-wall streaks extend in the streamwise direction and tilt in
the azimuthal direction. It is observed that the magnitude of
the positively fluctuating streaks in the rotating case is much

(a) Non-rotating pipe flow (Rob = 0)

(b) Axially-rotating pipe flow (Rob = 20)
Figure 11. Contours of instantaneous axial vorticity fluctu-
ations (ω ′

z
+) in the β -z plane at wall-normal position y+ ≈ 15

for the non-rotating (Rob = 0) and rotating (Rob = 20) flows.

smaller than that in the non-rotating case, indicating that the
axial system rotation tends to suppress the sweep events to fur-
ther restrain the formation of the hairpin structures, a trend that
is further evidenced by the JPDF pattern of u′z and -u′r.
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