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Léo Guiot de la Rochère
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ABSTRACT
In the present contribution, a recently developed own nu-

merical method is used, capable of representing individual

flexible vegetation elements as they reconfigure and closely

interact with the surrounding flow. The method is applied to

a model configuration composed of very long flexible rectan-

gular blades whose length and high flexibility translates into a

Cauchy number around 25,000. This very detailed, turbulence-

resolving and plant-resolving simulation at high Cauchy num-

ber is the first of its kind, enabled by a composition of efficient

numerical modeling techniques.

INTRODUCTION
Aquatic canopies formed by flexible submerged plants are

an essential element in river hydraulics through the flow re-

sistance they provide, their resilience from bed erosion, and

their impact on the transport of nutrients and pollutants (Nepf,

2012). Knowledge about these processes is frequently drawn

from controlled model experiments and simulations alike, em-

ploying relatively rigid elements to facilitate optical accessi-

bility and to reduce the complexity of simulations. Long and

highly flexible elements pose challenges to experiments and

simulations, and are addressed here.

PHYSICAL MODEL
Subject of the presented work is the fully developed flow

with bulk velocity Ub in a laterally confined open channel of

width Lz. Flexible blades of length L = Lz are attached per-

pendicular to the bottom wall at staggered locations, such that

they form a dense canopy while also avoiding any channeliza-

tion of the flow in between the stems. The overall problem

can be characterized by the nominal Cauchy number Ca =
ρ U2

b WL3/(2EI), where I = T 3W/12 is the second moment of

area, the buoyancy number B = (ρ −ρs)gWT L3/(EI), and by

Reynolds numbers ReH = UbH/ν and ReW = UbW/ν , based

on the channel height and the width of the blades, respectively.
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Figure 1. Visualization of an instantaneous solution, showing the streamwise velocity component u in the center plane z = 0.5Lz, and

the instantaneous shape of the canopy with each blade colored according to the vertical position y.

The corresponding values for the present case are listed in Ta-

ble 1, of which the huge value of Ca and the relatively large

value of B reflect the large flexibility of the blades, i. e. nomi-

nal drag and lift forces outweighing elastic forces.

NUMERICAL METHOD

The problem was analyzed on the basis of numerical sim-

ulations using the in-house code PRIME developed at TU

Dresden (Kempe & Fröhlich, 2012; Tschisgale & Fröhlich,

2020). This method solves the Navier-Stokes equations for

incompressible flows employing a second-order finite volume

approach on a staggered Cartesian grid for the spatial dis-

cretization and a second-order scheme for time integration. A

Large Eddy Simulation (LES) approach with the Smagorinsky

model was employed with damping close to the blades. In the

simulation reported below, the horizontal average of the ratio

of turbulent to molecular viscosity remains below 0.25. The

motion of the flexible structures was computed with a finite-

difference approach according to Lang & Arnold (2012), us-

ing a geometrically exact Cosserat rod model (Antman, 1995)

which is suitable for large deflections. While accounting for

bending, torsional, and shearing motion, the model is built

upon the assumption of rigid cross sections which prevents

warping. Since warping is, however, a central mechanism

of deformation its effect was modeled by reducing torsional

and shearing stiffnesses as proposed by Freund & Karakoç

(2016). Collisions were treated based on the model proposed

by Tschisgale et al. (2019) with several technical enhance-

ments. Coupling between fluid and structures was established

with a specialized Immersed-Boundary Method (IBM) appli-

cable for small and even vanishing thickness of the blades, im-

posing a no-slip condition on the surfaces of the rods (Tschis-

gale & Fröhlich, 2020).

Table 1. Dimensionless numbers.

number value description

Ca 25,000 Nominal Cauchy number

B 145 Buoyancy number

ReW 1922 Reynolds number

ReH 20,064 Reynolds number

λ 0.41 Roughness density

COMPUTATIONAL MODEL
The simulation was configured according to an exper-

iment presently conducted at the university of Lyon. The

computational domain spans a length of 18.5H ≈ 11.5Lz in

streamwise direction, where H is the water depth and Lz is the

spanwise extent. Periodic boundary conditions were applied

in x-direction, a free-slip condition was imposed at y = H, and

no-slip conditions were enforced at the bottom (y = 0) and the

side walls. With a spatial resolution of 24 fluid grid cells per

blade width, ∆x ≈ W/24, this translates into a numerical do-

main containing 460.8 million cells. The flow was driven by a

spatially constant volume force which was adjusted in time to

maintain the desired flow rate. Additional numerical parame-

ters are provided in Table 2.

Table 2. Numerical parameters.

parameter value description

Lx/L 11.5 channel length per blade length

Nx 4608 cells in streamwise direction

Ny 250 cells in vertical direction

Nz 400 cells in spanwise direction

CS 0.15 Smagorinsky constant

Ns 528 number of blades

Ne 108 number of elements per blade

RESULTS
The snapshot shown in Figure 1 above gives a first im-

pression of the flow. Due to their remarkable flexibility and

their buoyancy, the blades are oriented almost horizontally

along most of their length, forming a visually dense canopy

hull. This is underpinned by the roughness density λ , de-

fined as the ratio of the mean frontal area of a plant divided

by its share of the the bed area (Wooding et al., 1973), listed

in Table 1. A value of λ well above 0.1 indicates a dense

canopy (Nepf, 2012). The observed reconfigured canopy

height L∗ ≈ 0.24H places the case in the regime of shallow

submergence, H > L∗ > H/5 where canopy scale turbulence

dominates and boundary layer turbulence is usually not de-

2



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)

Osaka, Japan (Online), July 19-22, 2022

veloped (Nepf, 2012). The canopy hull is occasionally bro-

ken open by high-speed streaks, extending all the way to the

channel bed and making the blades form ridges to either side.

The blades, hence, undergo a pronounced meandering mo-

tion in spanwise direction, while also undulating vertically.

Their mean height, computed as the maximum elevation of

their time-averaged shape (i.e. the height of their tips), is in-

dicated in Figures 4a-b,e-g (broken line). Away from the side

walls, the resulting profile coincides with an iso-contour of the

streamwise mean-velocity component ⟨u⟩, and with the line of

maximum ⟨u′u′⟩ in Figure 4e. The averaged streamwise ve-

locity is maximum in the upper quarter of the channel between

the two counter-rotating swirls in the secondary flow below the

free surface, recognizable in Figure 4b. The symmetry-plane

profile of mean streamwise velocity in figure 4c has a narrow

region with ⟨u⟩ ≈ const. within the canopy and two inflections

points related to the drag of the blades. In contrast to situations

with stiffer blades (Nepf, 2012), the second inflection point is

not located at the height of the canopy edge, but instead occurs

considerably lower.

The dynamic behavior of the blades is analyzed by study-

ing the motion of their centerlines. The points along the

skeleton line of a blade are cccs(l, t), depending on time, and

the arc length distance l from the respective fixed end of the

blade, cccs0 = cccs(0, t) = const. Here, s is the index of the

respective blade. Defining the geometries relative to their

roots, (xs,ys,zs)
T = cccs(l, t)−cccs0, Figure 2a shows the average

shapes of the blade centerlines, while the root-mean-square de-

viations from this mean geometry are visualized in Figures 2b-

d. Here, the pronounced spanwise fluctuations are striking.

They reflect the secondary flow structures in Figure 4b. In a

first attempt to identify frequencies associated with blade mo-

tion, spectra were computed for the spanwise and vertical co-

ordinates of the tips of blades (Figure 3). They exhibit a broad

range of frequencies without any remarkable peak, other than

for a frequency linked to the flow-through time.

Autocorrelations of streamwise velocity fluctuations
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Figure 2. One-point statistics of the geometry of the blade

skeleton lines depending on the z-location of their fixed roots.

(a) Mean geometry of the blades; (b-d) root-mean-square val-

ues of their deviation from the mean shapes, showing x, y and

z-components separately.
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Figure 3. Amplitude spectra for the position of blade tips,

i.e. at l = L. (a) Spanwise component; (b) vertical compo-

nent. Spectra were computed per blade, then averaged across

the blades to obtain the solid black line. The gray areas span

the range of all and of 50 % of the spectra, respectively. Fre-

quencies associated with the channel dimensions are indicated

by the dotted lines.

are shown in Figure 5a, manifesting an inclined, elliptical

pattern, elongated in streamwise direction. Vertical velocity

fluctuations are only correlated over a significantly shorter dis-

tance (Figure 5b) resulting in the well-known spherical pattern

also observed by Shaw et al. (1995).

CONCLUSIONS
Scale-resolving simulations of the flow over highly flexi-

ble, resolved vegetation elements, give access to a broad range

of data, including field quantities related to the flow, and re-

lated to the motion of the blades. Despite being characterized

by a pronounced secondary flow due to the fixed side walls,

statistics are relatively constant in a core region of the chan-

nel geometry. Yet, future investigations are to feature wider

domains with spanwise periodicity. Although the blades form

a dense canopy surface which undulates under the flow, none

of these apparent frequencies are present in spectra of blade

tip motion. This indicates, that pointwise blade motion statis-

tics provide only a limited window into the motion of the

canopy. It may thus be more insightful to inspect the continu-

ous canopy hull formed by the union of all blades.
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Figure 4. One-point statistics of the fluid motion in the channel cross section and profiles located at the vertical center line z = 0.5Lz.

(a) mean streamwise velocity; (b) mean secondary flow with streamlines and magnitude of secondary velocity components; (c) mean

streamwise velocity in center plane; (d) Reynolds stresses in center plane; (e-g) Reynolds stresses, as indicated. In the contour plots,

the broken lines represent the average canopy height corresponding to the vertical position of the time-averaged blade geometries. ⟨·⟩t,x

denotes averaging in time, followed by averaging in the periodic x-direction, while u′ = u−⟨u⟩t is the deviation from the local time

average ⟨·⟩t .
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Figure 5. Two-point correlations of velocity fluctuations, computed for the center of the channel cross section, i.e. y= 0.5H, z= 0.5Lz.

(a) streamwise velocity component; (b) vertical velocity component.
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