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ABSTRACT
We propose a interpretable deep learning model that em-

bedded effect of physical parameter in turbulence. Turbulence
is a very complex flow, and the analysis of relationships be-
tween turbulent variables remains a fundamental challenge.
Recently, studies applying deep learning are being conducted
in attempts to analyze turbulence. Deep learning can extract
physics features in data, which is turbulent analysis model to
understand the physical relationship between variables in tur-
bulent flows. In this study, we consider turbulent heat trans-
fer to extract and analyze the effect of Prandtl number (Pr) in
the data. The deep learning model uses conditional generative
adversarial networks (cGAN) with decomposition algorithm.
Our model predicts surface heat flux with various Pr from wall
shear stresses in channel flow. The predicted surface heat flux
reflected the characteristics with respect to Pr well, and also
was statistically very similar to DNS. We analyzed the spatial
nonlinear relationship between wall shear stresses and surface
heat flux for Pr through gradient maps of trained our model.
Furthermore, for analysis of effect of Prandtl number, we ob-
served decomposed field into universal and Pr-dependent fea-
tures based on turbulent data sets. Through interpretation of
the deep learning model, it is possible to understand the physi-
cal interaction between variables, which can help to develop a
turbulence model considering physics.

INTRODUCTION
Turbulent heat transfer is an important phenomena ob-

served in science and engineering fields, and there are the ex-
amples such as gas turbines, heat exchangers and nuclear reac-
tors. The close analogy between temperature fluctuations and
momentum is well known, resulting in a high similarity be-
tween heat flux and shear stress at the wall (Antonia et al.,
1988; Kim & Moin, 1989; Kasagi et al., 1992). However, the
distribution of heat flux is highly depending on Prandtl num-
ber (Pr = ν/α; ν and α are kinematic viscosity and thermal
diffusivity, respectively.), and the strong nonlinearity between

the shear stress and heat flux is observed. Many studies us-
ing direct numerical simulation (DNS) have been conducted
to investigate the effect of Prandtl number (Kasagi & Ohtsubo,
1993; Kawamura et al., 1998), but the observation of local heat
flux with Pr has not been sufficiently performed because it
is mostly limited to the conventional statistical approach. In
fact, the turbulent transport mechanism of heat and momen-
tum near the wall occurs very locally and intermittently due to
the role of streamwise vortical structures. The dissimilarity be-
tween heat flux and streamwise shear stress is obviously found
in some regions, although there is a high correlation between
them (Abe et al., 2004).

In this study, we focus on the revealing the complicate re-
lation between the local heat flux and wall-shear stresses with
the Prandtl number-effect through deep learning (DL). Un-
like the traditional approach, DL can find a nonlinear mapping
function between variables and predicts instantaneous fields
with high accuracy, showing excellent performance in many
turbulence problems (Kim & Lee, 2020; Kim et al., 2021;
Güemes et al., 2019, 2021). Although DL performed well in
discovering interrelationship between input and output in var-
ious turbulence problems, but there are still unresolved funda-
mental questions about how DL learns turbulence, what char-
acteristics of turbulence DL learns, and which information is
essential for prediction. To take a step forward, understanding
and interpretation of DL is research of substance. Recently,
there are a few attempts to interpret DL with embedded fea-
tures of turbulence (Kim & Lee, 2019; Lu et al., 2020; Jagodin-
ski et al., 2020), but it is still difficult to provide sufficient
answers to these fundamental questions. Therefore, we apply
deep learning to predict the surface heat flux with various Pr
from wall shear stress, and further investigate the physical phe-
nomena between local heat flux and shear stress through the
interpretation of the trained model with the embedded of the
Prandtl number effect. The interpretable DL model could help
to provide an framework in which discover unknown physi-
cal phenomena in the data. In addition, interpretation of DL
would play a very important role in the development and per-
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Figure 1. Architecture of conditional generative adversarial networks (cGAN) with decomposition algorithm.

formance improvement of itself and for providing the guidance
of DL construction (e.g., hyper parameter optimization).

METHODOLOGY
Data collection

To collect datasets for training of the DL model, we per-
formed DNS of turbulent channel flow with passive tempera-
ture. The mean flow in streamwise direction is driven by a con-
stant pressure gradient. The constant temperature and no-slip
conditions are imposed at both walls, and periodic boundary
conditions are used in the horizontal directions. The govern-
ing equations are the continuity equation, the incompressible
Navier–Stokes equation and the energy equation, as follows:

∂ui

∂xi
= 0, (1)

∂ui

∂ t
+u j

∂ui

∂x j
=− ∂ p

∂xi
+

1
Reτ

∂ 2ui

∂x j∂x j
, (2)

∂T
∂ t

+u j
∂T
∂x j

=
1

PrReτ

∂ 2T
∂x j∂x j

, (3)

The equations are nondimensionalized by channel half width
δ , friction velocity uτ and temperature difference ∆T be-
tween top and bottom walls. x1(x), x2(y) and x3(z) denote
streamwise, wall-normal and spanwise direction, respectively.
The corresponding velocity components are u1(u), u2(v) and
u3(w), respectively. The dimensionless parameters are friction
Reynolds number(Reτ = uτ δ/ν), which is fixed at 180 and
molecular Prandtl number, ranging from 0.1 to 7.

Spatial discretization in the horizontal direction and the
wall-normal direction used a pseudo-spectral method us-
ing Fourier expansion and a central difference scheme, re-
spectively. The second-order Adams–Bashforth and Crank–
Nicolson schemes were applied for the temporal integration
of the nonlinear and viscous terms, respectively. The domain
size is 4πδ × 2δ × 2πδ for all Pr, and the number of grid
points for Pr = 0.1− 1 and Pr = 2− 7 is 128× 129× 128
and 192×129×192, respectively.

The collected data are wall-shear stresses and surface heat
flux of various Pr, and are divided into training, validation, and
testing data. The testing data are sufficiently decorrelated from
the training data.

Deep learning model
Conditional generative adversarial network (cGAN) is

used for prediction and interpretation of surface heat flux with
various Pr. In figure 1, cGAN consists of two networks, gen-
erator (G) and discriminator (D), and is trained through com-
petitive learning of these two networks. The input data is used
for the discriminator as conditioning, and this constraint al-
lows the generator to generate output image dependent on the
input one. Finally, we can obtain a generator that generates a
fake image similar to the real image while being dependent
on the input data. This process can be described as a min/max
problem, and the loss function used for training is as follows:

min
G

max
D

Ey∼PY [logD(y|x)]+Ex∼PX [log(1−D(G(x)|x))], (4)

In this study, x is the streamwise and spanwise wall shear stress
and Prandtl number, and y is the surface heat flux for Pr. Ad-
ditionally, for in detail analysis of the Pr-effect, we applied a
decomposition algorithm to cGAN that can separate surface
heat flux into universal features qU

w and Pr-dependent features
qP

w. For the extraction of the Pr-effect, the generator is divided
into a universal generator GU and the parameter effect gener-
ator GP. GU generates universal features that have common
characteristics of surface heat flux for all Pr from wall shear
stresses. GP extracts Pr dependent features with properties for
the Pr-effect from the wall shear stress and Prandtl number. Fi-
nally, the surface heat flux (qw = qU

w +qP
w) can be obtained as

the sum of the decomposed features, and the total loss function
for training of the model is as follows.

Ltotal = LcGAN +λ1Lmse +λ2LPr, (5)

with

Lmse =
1

Np
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2, (6)
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where the first and second terms on the right-hand side in equa-
tion (5) are the cGAN loss and mean squared loss (MSE), re-
spectively. The last term is the physical parameter loss, which
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Figure 2. Instantaneous surface heat flux for Pr, which was not used in training, obtained from wall shear stresses using cGAN.

can decompose the surface heat flux into universal and Pr-
dependent features. λ1 and λ2 are 10 and 200, respectively.
In equation (6) and (7), Np is the number of inputs, and G(x)
denotes the predicted surface heat flux through the generator.
GP(x) and GU (x) are a Pr-dependent feature and the univer-
sal feature, respectively. In the training process, the parameters
of the generator (G) are trained in the direction of minimizing
Ltotal , and the parameters of the discriminator (D) are trained
in the direction of maximizing LcGAN .

RESULTS AND DISCUSSION
Prediction of surface heat flux with Pr

We apply cGAN with decomposition algorithm for pre-
diction of surface heat flux with Pr from streamwise wall shear
stress, spanwise wall shear stres and Prandtl number in turbu-
lent channel flow. In figure 2, we qualitatively evaluated our
model by considering for the surface heat flux with untrained
Pr, which was not used in training. Our model generated sur-
face heat flux field that was slightly overpredicted than one of
DNS for the lowest Pr = 0.1, but the predicted field is similar
to that of DNS. The surface heat flow for Pr = 1 and 7 pre-
dicted through cGAN well have the characteristics of the heat
flow observed in DNS.

Table 1. Correlation coefficient between target data (DNS
data) and surface heat flux with Pr predicted by the deep learn-
ing model.

cGAN CNN

trained Pr

0.2 0.890 0.909

0.71 0.968 0.973

2 0.975 0.979

5 0.922 0.931

Untrained Pr

0.1 0.802 0.822

0.4 0.918 0.937

1 0.967 0.977

3 0.945 0.958

7 0.876 0.897

For qualitatively evaluation of the trained
model, CNN was considered as a comparative
model. First, we examined the correlation coefficient
(R =

〈
q
′DNS
w q

′DL
w

〉
/(σ(qDNS

w )σ(qDL
w )); qw is surface heat

flux, and σ is standard deviation) between generated heat
flux and that of DNS in table 1. Both cGAN and CNN
were able to predict accurately at approximately 0.9 for all
P except Pr = 7. Although the surface heat flux predicted
through cGAN had a relatively slightly lower correlation
coefficient compared to CNN, cGAN was able to generate a
DNS-like surface heat flux. Additionally, probability density
function(P.d.f.) of surface heat flux predicted through CNN
and cGAN are presented in figure 3. For trained Pr in
figure3(a), CNN generated surface heat flux for all Pr that was
slightly underestimated than that of DNS, but the heat flux
predicted through cGAN was very similar to the distribution
of DNS. Furthermore, we tested our model for surface heat
flux for untrained Prandtl number in figure3(b), which is
not considered for learning. Similar to the results for the
trained Prandtl number, the heat flux generated by CNN is
underpredicted than the distribution of DNS. On the other
hand, cGAN was able to predict similar to the results of DNS
for strong heat flux. These results mean that our model can
generate a heat flux that reflects the physical characteristics of
the Prandtl number well. Although cGAN has slightly lower
prediction accuracy than CNN in point-by-point statistics,
we consider only cGAN with more accurate predictions for
strong local heat fluxes, which are more important in turbulent
heat transfer.

Interpretation of Pr-effect
For interpretation of the trained model, we analyzed the

underlying physical properties between wall shear stresses and
surface heat flux with respect to Pr through gradient maps ob-
tained from the trained model. For reliable analysis, we fo-
cused on trained Pr, where our model made more accurate
predictions in the previous section. The sensitivity analysis
through gradient map can understand the relation between in-
put and output, which has been applied to image classification
and regression problems (Simonyan et al., 2013; Kim & Lee,
2019). The gradient map is defined as follows.

Sk(i, j) =
∂N(I)

∂ Ik(i, j)
(8)
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Figure 3. Probability density function (P.d.f.) of surface heat
flux for (a) trained Pr(= 0.2,0.71,2,5) and (b) untrained Pr(=
0.1,0.4,1,3,7) obtained through deep learning models.

where Sk
i, j is gradient map for input Ik(i, j) with respect to out-

put N(I). and i and j are indices in x- and z-direction. respec-
tively. k is the input variable.

First, we investigate nonlinear relationship between
streamwise wall shear stress and local heat flux, and the av-
erage gradients map between them for Pr are presented in fig-
ure 4. The positive peak moves from upstream to downstream
with increasing Pr. It is relevant with that the temperature
field is more dominated by large scale motion with decreas-
ing Pr, which increases the convection velocity of tempera-
ture (Kowalewski et al., 2003). For the average of gradient
maps for spanwise wall shear stress in figure 5, the signifi-
cant patterns are skew symmetricity(Sτ̃w,z

i, j =−Sτ̃w,z
i,− j) for all Pr.

The case of Pr = 0.2,0.71 indicates that the local heat flux can
be enhanced when the vortex pair is downstream or vortices
cross diagonally at the center point, even though the stream-
wise wall shear stress is weak. The gradient for Pr = 5 is rel-
atively weak, meaning that the surface heat flux at high Pr is
weakly influenced by the spanwise wall shear stress compared
with other Prandtl numbers. In short, we identified the nonlin-
ear relationship between wall shear stresses and local heat flux
for considering the Pr effect.

Next, for analysis of noticeable physical properties, we
confirmed relationship between the decomposed features, uni-
versal and Pr-dependent features, and the surface heat flux ob-
tained through the trained model. The two-point correlation
between them are presented in figure 6. The universal feature
had a high correlation coefficient with the surface heat flux for
all Pr at −50 < r+x < 50. This indicates that universal features
reflect the common characteristics of surface heat flux regard-
less of Prandtl number. For relation between surface heat flux
and Pr-dependent feature in figure6(b), when Pr > 1, the high

Figure 4. Average of gradient maps for streamwise wall
shear stress with respect to surface heat flux for Pr obtained
through cGAN.

Figure 5. Average of gradient maps for spanwise wall shear
stress with respect to surface heat flux for Pr obtained through
cGAN.

correlation coefficient between them is at r+x < 0. On the other
hand, a high correlation is observed at r+x > 0 when Pr < 1.
This result suggests that as the Prandtl number decreases, our
model can extract features that well reflect the physical proper-
ties shown under the effect of large scale motion. These results
imply that our model can automatically separate the surface
heat flux with respect to Prandtl number without additional
knowledge in the training process, and the decomposed fea-
tures well reflect the influence on Prandtl number.
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Figure 6. Two-point correlation along streamwise direction
(a) between surface heat flux and universal features and (b)
surface heat flux and Pr-dependent features.

CONCLUSION
We developed cGAN with a new decomposition algo-

rithm to predict turbulent heat transfer with Pr. The model
was able to generate well not only for the Prandtle numbers
considered in the training process, but also for the thermal flux
for the Prandtl numbers not used in the training. Our model
quantitatively generated a more accurate surface heat flux for
all Pr than that of comparative model, and the predicted heat
flux very similar to the distribution of DNS.

For the interpretation of the trained model, we investigate
gradient maps for wall shear stresses with respect to surface
heat flux. Through the gradient map, we confirmed the non-
linear correlation between input and output well for Prandtl
number, and our model well reflected the effect observed in
the surface heat flux with Pr. Furthermore, our model can ex-
tract the effect of physical parameter based on turbulence data
without detailed knowledge, allowing analysis of the physical
parameter effect and the relationship between turbulence vari-
ables. Our framework would be extended to analyze effect of
other physical parameters such as Reynolds number, discover
physical phenomena in data, and understand deep learning of
turbulent flows
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