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ABSTRACT
We propose three kinds of mean-field modeling strategies

for the complex dynamics generally found in fluid mechan-
ics. A key enabler is a mean-field assumption, where slowly-
varying mean-field deformations are due to the fluctuating
field through the Reynolds stress, resulting in a Reynolds-
like decomposition. We have developed projection-based and
cluster-based reduced-order models, i.e., a least-order mean-
field model for the successive bifurcations (Deng et al., 2020),
an aerodynamic force model associated with a Galerkin model
(Deng et al., 2021), and a hierarchical network model to au-
tomate the identification of multi-attractor dynamics (Deng
et al., 2022). These mean-field models are exemplified for a
challenging test case of the fluidic pinball at Re = 80, charac-
terized by six invariant sets (three steady solutions and three
limit cycles) induced by the first two successive bifurcations
of pitchfork and Hopf types. This work shows a paradigm for
automatable reduced-order modeling of complex flows using
first principles and machine learning techniques, balancing be-
tween data-driven and physics-driven approaches and improv-
ing model interpretability and generalizability.

MODELING COMPLEX FLOW DYNAMICS
The complexity of the fluid flow comes from its high di-

mensionality, nonlinearity, and multiscale spatial and tempo-
ral behavior. A massive amount of flow detail information will
be generated for increasing resolution when dealing with fluid
flow problems. It is hard to understand all these details of dif-
ferent scales, and the control optimization is impossible to be
applied. Reduced-order modeling aims to obtain simplified,
interpretable models of complex systems. Discussing and an-
alyzing the dynamics in this low-dimensional approximated
system makes it possible to understand the underlying mech-
anisms and design the control laws. Such low-dimensional
models are essential for flow dynamics prediction, effective
control, and optimization (Rowley & Dawson, 2017).

In the era of big data, extracting physical laws of complex

Figure 1. Flow configuration of the fluidic pinball. A vor-
ticity field is color-coded in the range [−1.5,1.5] from blue to
red. Drag and lift coefficients are denoted with CD and CL.

nonlinear phenomena and constructing parsimonious models
from data is one of the frontier hotspots. Artificial Intelli-
gence (AI) methods and Machine Learning (ML) techniques
are revolutionizing our traditional paradigm of modeling and
control in fluid mechanics (Brunton et al., 2020). However,
data-driven approaches cannot guarantee the models’ stability,
generalization, and physical interpretability. Combining first
principles and a priori physical information into the modeling
process is the key to promising solutions to this problem.

In this presentation, we will start with the weakly non-
linear analysis under the mean-field consideration and develop
three kinds of modeling strategies for the complex wake dy-
namics of the fluidic pinball. The resulting models are used
to describe the transient and post-transient, multi-attractor dy-
namics of the successive bifurcations, the instantaneous aero-
dynamic force, and a multiscale topography of global and local
dynamics .

Fluidic pinball
As shown in Fig. 1, the fluidic pinball consists of three

fixed cylinders, whose axes are placed on the vertices of an
equilateral triangle in the (x,y) plane and perpendicularly to
this plane. The gap distance is one radius between every two
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Figure 2. Trajectories in the time-delayed embedding space
of the force coefficients (lift, lift with time delay and drag)
from the three unstable steady solutions (bottom) to the three
periodic solutions at Re = 80. A snapshot is taken for each
periodic solution and shown on the top.

cylinders. The upstream flow U∞ is uniform in the streamwise
direction ex at the inlet.

The transient and post-transient dynamics at different
Reynolds numbers are numerically investigated by Direct Nu-
merical Simulation (DNS). At Re = 80, three steady solutions
and three periodic solutions (limit cycles) can be found due
to two successive instabilities, as shown in Fig. 2, henceforth
providing a challenging test case for the derivation of a pre-
dictive force model. We consider multiple trajectories starting
from the vicinity of the three steady solutions. More details
for quasi-periodic and chaotic dynamics at higher Reynolds
numbers can be found in Deng et al. (2020).

MEAN-FIELD ANSATZ
Under the mean-field consideration, the triple decompo-

sition of the flow field reads

u(x, t) = ⟨u(x, t)⟩T︸ ︷︷ ︸
ω≪ωc

+ ũ(x, t)︸ ︷︷ ︸
ω∼ωc

+u′(x, t)︸ ︷︷ ︸
ω≫ωc

, (1)

where the dominant angular frequency ωc is defined as the
dominant peak in the Fourier spectrum of the velocity field.
The velocity field is decomposed into a slowly-varying mean-
flow field ⟨u⟩T , a coherent component on timescales of order
2π/ωc, involving coherent structures ũ, and a remaining (sup-
posedly) non-coherent small scale fluctuations u′. This kind of
decomposition follows the weakly nonlinear analysis in build-
ing the low-order Galerkin models of Tadmor et al. (2011).

From the mean-field theory, the slowly-varying mean-
flow field evolves out of the steady solution under the action of
the Reynolds stress associated with the most unstable eigen-
mode(s). The mean-flow field deformation u∆ is used to de-
scribe the difference between the slowly-varying mean flow
and the invariant base flow us(x), which reads

⟨u(x, t)⟩T = us(x)+u∆(x, t). (2)

The linear dynamics only involve a minimal neighbor-
hood of the base flow us, as the perturbation is tiny at the onset
of the instability. As the perturbation develops, the nonlinear

term cannot be ignored and will start to modify the base flow.
Hence, the mean flow deformation comes from the effect of
the Reynolds stresses of the coherent component (ũ ·∇)ũ and
of the non-coherent small scale fluctuations (u′ ·∇)u′. During
the mean-field distortion from the base flow us to the mean
flow, the original linear dynamics is no longer valid, and the
nonlinear interactions will drive the transient dynamics until
saturation. For the transient and post-transient dynamics, the
slaving relation between the active modes (fluctuations) and
the shift modes (mean-field distortion) and their timescale dif-
ference can be used to improve model interpretability in a data-
driven modeling process.

MEAN-FIELD MODELS
In this section, we briefly introduce the three kinds of

mean-field modeling methodologies and discuss their results.

Least-order mean-field model
For the Galerkin framework, the velocity field u(x, t) is

decomposed in a basic mode u0(x) with amplitude a0 ≡ 1 and
a fluctuating contribution

u(x, t) =
N

∑
i=0

ai(t)ui(x), (3)

where the fluctuation is represented by a Galerkin approxi-
mation of N orthonormal space-dependent modes ui(x), i =
1, . . . ,N, with time-dependent amplitudes ai(t).

The Galerkin expansion in Eq.(3) satisfies the incom-
pressibility condition and the boundary conditions by con-
struction. The evolution equation for the mode amplitudes ai
is derived by a Galerkin projection of the Navier-Stokes equa-
tions onto the modes ui:

d
dt

ai = ν

N

∑
j=0

lν
i ja j +

N

∑
j,k=0

qc
i jka jak +

N

∑
j,k=0

qp
i jka jak, (4)

with the coefficients lν
i j =

(
ui,△u j

)
Ω

, qc
i jk =(

ui,∇ ·u j ⊗uk
)

Ω
and qp

i jk =
(
ui,−∇p jk

)
Ω

for the vis-
cous, convective and pressure terms in the Navier-Stokes
equations, respectively.

The Galerkin system, as in Eq.(4), directly derived from
the Galerkin projection of the leading Proper Orthogonal De-
composition (POD) modes, cannot capture the transient and
post-transient dynamics correctly. It introduces extremely
long transients due to the underestimated growth rate. In a
least-order mean-field model, we represent the flow dynam-
ics with the fewest number of degrees of freedom, as shown
in Fig. 3(left). The basic modes are chosen with the knowl-
edge of the instabilities that the system has undergone while
increasing the Reynolds number. Based on an optimal low-
dimensional basis, a general Galerkin framework leads to the
linear-quadratic Ordinary Differential Equations (ODE) with
normal forms of the corresponding bifurcations, as shown in
Fig. 3(right). We allow the cross-terms to exist for the cou-
pling relationship between the degrees of freedom of two bi-
furcations. Our strategy is to correct some of the system coef-
ficients by the knowledge provided by the linear stability anal-
ysis and the asymptotic dynamics. The remaining coefficients
of the nonlinear interaction terms are identified by a sparse re-
gression algorithm with physics-based constraints, namely the
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Figure 3. Least-order mean-field model at Re = 80, with the
elementary degrees of freedom based on bifurcations (left) and
the dynamical system with normal forms of corresponding bi-
furcations. See Deng et al. (2020) for the details.

constrained sparse Galerkin regression (Brunton et al., 2016;
Loiseau & Brunton, 2018). The least-order model is only five-
dimensional but can reproduce the key features of the full dy-
namics (Deng et al., 2020).

Galerkin force model
Force computations on immersed bodies are of particular

concern in engineering fluid mechanics. Despite the wide use
of POD-Galerkin for reduced-order modeling in industry, sys-
tematic investigations and interpretations of the aerodynamic
force in the Galerkin framework are mostly missing. Previ-
ous studies of Noca et al. (1999) revealed that the force on
an immersed body can be expressed simply in terms of the
velocity field and its derivatives. Based on this idea, Liang
& Dong (2014) derived a force expression with the forces of
each velocity-based POD mode and the forces from the inter-
action between the POD modes. The Galerkin force model
proposed in our study reveals that the force on the body is
a constant-linear-quadratic function of the mode amplitudes
from a Galerkin expansion. In addition, physical constraints
and sparse calibration can be further used to improve the hu-
man interpretability of the resulting models.

Based on the Galerkin expansion of Eq.(3), the instanta-
neous force on the body can be derived as a function of the
mode amplitudes from first principles. Let Γ be the bound-
ary of the body in the flow domain Ω and n the unit normal
pointing outward from the surface element dS. The viscous
force component in direction eα of the velocity mode u j is
expressed as

qν
α; j = 2ν

∮
Γ

∑
β=x,y

Sα,β (u j)nβ dS, (5)

where the strain rate tensor Sα,β =
(
∂α uβ +∂β uα

)
/2 with in-

dices α,β = x,y. The pressure force involves two velocity
modes from the pressure Poisson equation

∇
2 p jk =∇·

(
−∇ ·u j ⊗uk

)
=− ∑

α=x,y
∑

β=x,y
∂α uβ (u j)∂β uα (uk),

(6)
and the force component in α-direction is expressed as

qp
α; jk =−

∮
Γ

dS nα p jk. (7)
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Figure 4. Time evolution of the drag and lift coefficients in
the full-flow dynamics (solid black) and for the force model
(red dashed), at Re = 80.

Hence, the total force can be expressed as a constant-
linear-quadratic expression in terms of the mode coefficients

Fα = Fν
α +F p

α =
N

∑
j=0

lν
α; ja j +

N

∑
j,k=0

qp
α; jka jak. (8)

As a0 ≡ 1, the drag (in direction ex) and lift (in direction ey)
coefficients can be derived as a constant-linear-quadratic ex-
pression in terms of the mode coefficients,

CD = cx +
N

∑
j=1

lx; ja j +
N

∑
j,k=1

qx; jka jak, (9)

CL = cy +
N

∑
j=1

ly; ja j +
N

∑
j,k=1

qy; jka jak, (10)

where cα = qν
α;0 + qp

α;00, lα; j = qν
α; j + qp

α; j0 + qp
α;0 j, and

qα; jk = qp
α; jk.

The drag and lift formulae are simplified for the fluidic
pinball exploiting the symmetry of the modes. Approximately
half of the terms can be discarded on the grounds of symme-
try. A second simplification is performed with a sparse calibra-
tion of the remaining coefficients. We employ the constrained
SINDy (sparse identification of nonlinear dynamics) algorithm
(Brunton et al., 2016; Loiseau & Brunton, 2018), and the spar-
sity parameter λ penalizes any non-vanishing term and yields
sparse human-interpretable expressions.

The resulting drag and lift formulae show long-term
agreement with the force coefficients in the full-flow dynam-
ics from DNS, based on a mean-field Galerkin model with only
seven degrees of freedom, as shown in Fig. 4. The sparse force
model successfully describes multi-attractor behaviour even
for the complex dynamics with six exact solutions. We provide
a detailed discussion on the challenges of applying the purely
projection-based approach and using standard POD modes in
Deng et al. (2021).

In summary, we proposed an aerodynamic force formulae
complementing mean-field POD-Galerkin models for the un-
forced fluidic pinball. We envision successful applications of
sparse regression for aerodynamic forces for turbulent flows.
The force formula may be particularly instructive for drag re-
duction with active control. Given a Galerkin model, the force
formula indicates beneficial regions of the state space. Thus,
an upfront kinematical insight is gained in which direction
control needs to ‘push’ the attractor.
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Figure 5. Sketch for HiCNM applied to the fluidic pinball at
Re = 80, see Deng et al. (2022) for details.

Hierachical cluster-based network model
Automated reduced-order modeling is one of the most

challenging and exciting directions for complex nonlinear dy-
namics. The traditional modeling techniques, like Galerkin
modeling, always project the original system onto a low-
dimensional subspace and model an approximate dynamical
system with an optimal basis (Taira et al., 2017). The projec-
tion basis decides the closeness of the approximate dynamics
to the full dynamics. Data-driven modeling can liberate us
from the issue of choosing the projection basis and provide
us with novel and promising modeling strategies from math-
ematics, data science, and statistical physics. In this subsec-
tion, we briefly overview the hierarchical modeling strategy,
which presents great consistency with the Reynolds decompo-
sition and shows its great potential for multi-scale and multi-
frequency modeling.

Modal analysis-based modeling relies on the designer’s
empirical and theoretical knowledge to select modes and con-
struct subspace. In contrast, Cluster-based ROM (CROM) or
Network Model (CNM) can effectively avoid these challenges
(Kaiser et al., 2014; Fernex et al., 2021). The clustering al-
gorithm achieves a kinematic compression of the input data
um, m = 1, . . . ,M, by grouping the similar states into the clus-
ters Ck, k = 1, . . . ,K. The snapshots are featured by statistical
averages of the grouping data (centroids) in the original data
space by k-means algorithm and are labeled with a cluster in-
dex km = k, k = 1, . . . ,K. As in the state space without ap-
proximation, the identified manifold can preserve the original
structure depending on the cluster distribution. The CROMs
are expected to replace the traditional modeling methods as a
more generic means of modeling flow dynamics.

According to the minimization strategy of k-means algo-
rithm, the clustering is optimal for the spatial distributions of
the centroids but not for the dynamics. The classical CROM
may face difficulties with multi-scale problems in transient
and post-transient dynamics because the clustering results are
highly dependent on the spatial distances in the state space.
The critical enabler for applying CNM to the transient and
post-transient dynamics is the triple decomposition under the
mean-field consideration, as in Eq.(1). By decomposing the
flow into a hierarchy of components, we can systematically
model the dynamics at different scales, as shown in Fig. 5.

A self-supervised hierarchical clustering is performed
from top to bottom, which prioritizes the modeling of global
trends for the mean flow distortion, then refines the local dy-
namics with sub-clusters. Both the global trends and the local
structure during the transition can be well preserved by a fewer
number of clusters in the hierarchical structure, which leads to
a better understanding of the physical mechanisms involved in
the flow dynamics.

In summary, the Hierarchical Cluster-based Network
Model (HiCNM) introduces hierarchical structure into the
CNM from the mean-field considerations, which enables sys-
tematically identifying the transient and post-transient dynam-
ics between multiple invariant sets in a self-supervised man-
ner and steps towards automated ROM of complex dynam-
ics. HiCROM inherits the excellent recognition performance
of CROM and provides a generalized modeling strategy for
complex dynamics with multiple scales and frequencies.

CONCLUSIONS
We propose combining the mean-field assumption in fluid

flow and data-driven ML methods to optimize the ROM meth-
ods for complex flow dynamics. In the classic POD-Galerkin
framework, the mean-field assumption leads to a least-order
constrained Galerkin system, where the degrees of freedom are
optimal with respect to the underlying instabilities in the sys-
tem. Based on the Galerkin expansion, the instantaneous force
on the body is derived as a constant-linear-quadratic function
of the mode amplitudes from first principles. The force model
can be further simplified using symmetry properties and sparse
calibration. The HiCROM can systematically identify the
multi-scale dynamics, including the transitions between dif-
ferent Navier-Stokes solutions, the bifurcating dynamics into
different attractors, and the local structures from destabiliza-
tion to saturation stages. All the above-mentioned modeling
strategies are exemplified for the transient and post-transient
dynamics of the unforced fluidic pinball at Re = 80 and re-
sult in low-dimensional, sparse, human-interpretable mean-
field models.

This will be a fruitful area for advancing automated ROM
with first-principles and AI methods for complex dynamical
systems in flow mechanics and industrial applications (like
vehicles, trains, airplanes, and other nonlinear dynamics) to
achieve a deeper understanding of physical mechanisms, dy-
namics estimation, state control, and optimization.
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R. 2014 Cluster-based reduced-order modelling of a mix-
ing layer. J. Fluid Mech. 754, 365–414.

4



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

Liang, Z. & Dong, H. 2014 Virtual force measurement of POD
modes for a flat plate in low reynolds number flows. AIAA
Paper pp. 2014–0054.

Loiseau, J. C. & Brunton, S. L. 2018 Constrained sparse
galerkin regression. J. Fluid Mech. 838, 42—-67.

Noca, F., Shiels, D. & Jeon, D. 1999 A comparison of methods
for evaluating time-dependent fluid dynamic forces on bod-
ies, using only velocity fields and their derivatives. J. Flu-
ids Struct. 13 (5), 551–578.

Rowley, C. W. & Dawson, S. T. 2017 Model reduction for flow

analysis and control. Ann. Rev. Fluid Mech. 49, 387–417.
Tadmor, G., Lehmann, O., Noack, B. R., Cordier, L., Delville,
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