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ABSTRACT
Large-eddy simulation (LES) is actively carried out for

many scientific and engineering problems. Recently super-
vised learning approaches using high-fidelity flow data in
training process are applied to LES modeling, however, there
are significant disadvantages. For example, the trained model
is not effective in actual LES, and such high-fidelity data is
usually not available in real-world problems. To overcome
these, we employed deep reinforcement learning (DRL) where
actual LES and training of subgrid-scale (SGS) model are car-
ried out simultaneously using only target statistics as given in-
formation. We additionally applied physical constraints such
as reflectional invariance and wall boundary conditions on
DRL for reducing the training cost. Through this, we are chal-
lenging to find a reliable SGS model for three-dimensional
LES of wall-bounded turbulence. The DRL model that pro-
duces the local SGS stress based on the local velocity gradient
were trained, as a result, we found that in various training envi-
ronments DRL could discover models that make mean velocity
and mean Reynolds shear stress of actual LES be consistent
with the target, while the conventional SGS models usually
mispredict them. We conclude that DRL would be a effective
tool for turbulence modeling in practical problems.

INTRODUCTION
For many problems involving turbulent flows, precise

simulation is important, but in real-world problems the cost of
direct numerical simulation (DNS) that represents the smallest
scale is still too high despite of the rapid development of com-
putational hardware and numerical algorithm. For the purpose
of improving the trade-off between cost and accuracy of sim-
ulation, several types of turbulence models have been devel-
oped.

As one of them, we focus on the large-eddy simulation
(LES) where instantaneous vortical motions are represented
and the subgrid-scale (SGS) stress should be modeled by the
resolved scale information. Many algebraic SGS models based
on statistical and physical analysis have been proposed. As a

pioneering approach, Smagorinsky (1963) suggested a model
that the anisotropic part of SGS stress tensor τi j is represented
by the resolved strain-rate tensor S̄i j and eddy viscosity νt .
For an effort to apply LES to complex flows, some modifica-
tions such as dynamic Smagorinsky model (DSM) (Germano
et al., 1991; Lilly, 1992) and Vreman model (Vreman, 2004)
were suggested. While those existing SGS models continue
to evolve and are successfully applied to practical problems,
there is certainly room for significant improvement in terms
of accuracy and cost. For example, coarse-grained LES with
DSM is quite inaccurate in canonical flows.

In recent years machine learning models using filtered
DNS data for training are challenging to the conventional SGS
models. In turbulent channel flow Gamahara & Hattori (2017)
and Park & Choi (2021) developed neural network (NN)-
based model with the classical supervised learning framework,
which is composed of four steps; data collection, training, a
priori test and a posteriori test. However, due to the significant
mismatch between a priori test and a posteriori test, it is diffi-
cult to develop a reliable model. It is most likely because the
model was trained only at the equilibrium state and the effect
(reaction) of modeled SGS stress in actual LES was not taken
into account in the training process. Another major drawback
is that the classical supervised learning requires high-fidelity
data for training. In real-world problems, such data is usually
not available, and only some partial or statistical data can be
collected. As an alternative algorithm, we are expecting that
deep reinforcement learning (DRL) would help overcome the
disadvantages of classical supervised learning. Very recently,
Novati et al. (2021) proposed the DRL-LES framework for de-
veloping a SGS model in forced homogeneous isotropic turbu-
lence, which could predict energy spectrum quite well. But the
learning is not successful in the case that actions are fully col-
located in all grids without interpolation. To overcome the pre-
vious limitations, we proposed a physics-constrained DRL al-
gorithm that perfectly guarantees reflectional equivariance and
boundary conditions of the SGS model. Through this, we ex-
tend DRL to LES modeling in wall-bounded turbulence, which
remains as a challenging problem due to its inhomogeneity.
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Figure 1. Illustration of present work. A DRL-LES framework for developing a subgrid-scale (SGS) model in wall-bounded turbu-
lence is proposed. Running of three-dimensional (3D) LES and learning of deep neural network (DNN) that produces the SGS stress
from the resolved velocity gradient, are carried out simultaneously. Target statistics for training are the mean viscous stress and the
mean Reynolds shear stress, used for reward calculation.

METHODOLOGY
The DRL-LES framework consists of a LES solver and

a reinforcement learning algorithm. LES of turbulent channel
flow with a NN-based SGS model and its training using the
data generated from the LES are carried out simultaneously,
as shown in figure 1.

Numerical method
The governing equations of LES are filtered incompress-

ible Navier–Stokes equations with a spatial filter operation (·̄),

∂ ūi

∂xi
= 0,

∂ ūi

∂ t
+

∂ (ūiū j)

∂x j
=− ∂ p̄

∂xi
+

1
Reτ

∂ 2ūi

∂x j∂x j
−

∂τi j

∂x j
(1)

The equation is non-dimensionalized by the channel half width
(δ ) and the friction velocity (uτ ). x1 (x), x2 (y), and x3 (z) mean
the streamwise, wall-normal, and spanwise directions, and the
corresponding velocity components are ui(= u,v,w), respec-
tively. The simulation parameter is the friction Reynolds num-
ber Reτ = uτ δ

ν
where ν is the kinematic viscosity. The SGS

stress τi j is modeled by DNN πω with trainable parameters ω .
The ultimate goal of present work can be defined as below.

argminω ||Starget−SLES(πω )|| (2)

where S is statistics of fDNS and LES. Although the goal of
DRL is the same as developing a DNN-based SGS model with
high statistical accuracy, its results can be highly dependent
on the choice of state and action, the definition of reward, and
some important techniques of the algorithm. In the sense that
performance of a posteriori test is guaranteed if only the train-
ing is successful, the construction of the robust learning algo-
rithm is important.

Deep reinforcement learning
DRL is an algorithm that finds the optimal action at to re-

ceive the maximum reward in a given state st of environment.

At this time, the target to maximize is the long-term reward
(Rt = ∑

∞
i=t γ i−tri with 0 < γ < 1) that the instantaneous re-

ward rt coming out after the action is accumulated for a time
horizon. In our LES SGS modeling problem, the state and ac-
tion are the resolved flow variables and modeled SGS stresses,
respectively, and the reward can be defined as the statistical
distance between the target (filtered DNS) and the LES. In the
training process, the DRL algorithm optimizes the DNN-based
SGS model in the direction of making the statistical accuracy
of the LES precise. In this study, one of DRL algorithms, deep
deterministic policy gradient (DDPG) is used.

Eπω

[
∞

∑
i=t

γ
i−tri

]
≈ Qθ (st ,at) (3)

Here, training of Qθ with deterministic policy is mostly de-
pending on recursive relation of Bellman equation.

Using critic DNN that predicts the long-term reward, we
can train the actor DNN πω in the direction of increasing the
critic value. Its objective function to maximize is as follows :

argmaxω Est [Qθ (st ,πω (st))] (4)

Our purpose through DRL is to discover an optimal SGS
model πω that could make the statistics of LES precise. πω is
fully connected neural network that produces SGS stress based
on the resolved velocity gradient and the local grid size. This
local framework can be extended to more complex flow eas-
ily. And critic DNN is convolutional network as a surrogate
model predicting the future state of flow based on the present
state. And the instantaneous reward is defined by two statisti-
cal quantities, mean viscous stress and mean Reynolds stress,
as follows.

rt(y) =
2

∑
i=1
−ci

∣∣∣SfDNS
i (y)−SLES

i (t +∆tDRL,y)
∣∣∣1/2

, (5)
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Figure 2. The effect of physical constraints on DRL perfor-
mance. r and b in the caption denote reflectional invariance
and boundary constraints, respectively. (a) is the accuracy of
〈dū/dy〉 and 〈ū′v̄′〉 and (b) is the accuracy of 〈dw̄/dy〉.

where

S1 =

〈
1

Reτ

dū
dy

〉
, S2 =

〈
ū′v̄′
〉
. (6)

Here, ∆tDRL is the period of data collection and learning, and
we set it as 30 LES time steps, which corresponds to 5.4 wall
time units. And, We carried out DRL for learning steps of
10, 000 – 15, 000 to find the optimal SGS model. And, more
details related to DRL algorithms are presented in Kim et al.
(2022).

RESULTS
DRL was mainly carried out for Reτ = 180 and filter

(grid) size (∆x+,∆z+) = (70.7,35.3). We applied two kinds
of physical constraints, boundary condition and reflectional in-
variance to DNN and observed their effect on training perfor-
mance. The statistical accuracy used for the quantification is

Figure 3. Test for (∆x+,∆z+) = (70.7,35.3). (a), (b) and (c)
are the streamwise mean velocity, the mean Reynolds shear
stress and the mean SGS shear stress, respectively.

as follows:

Ai =
1

Ny

Ny

∑
j=1
−
∣∣∣SfDNS

i (y j)−SLES*
i (y j)

∣∣∣1/2
. (7)

Here, Ai is the accuracy of statistics. First, the accuracy of
mean viscous stress and mean Reynolds stress used in reward
is presented in figure 2(a). It is observed that DRLb,r with two
physical constraints has better speed and convergence accu-
racy than DRLpure without physical constraint. Also, as shown
in figure 2(b), DRL without reflectional invariance could gen-
erate statistically anti-symmetric flows that are unphysical in
channel flow. It indicates that applying physical constraints on
DRL is useful and necessary.

Next, time-averaged results of actual LES with the trained
model are presented in figure 3 with the conventional SGS
models including DSM and no model (τi j = 0). LES with
the trained DRL model could predict the target statistics of
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Figure 4. One-dimensional energy spectrum at y+ ≈ 15. (a)
and (b) is streamwise and spanwise directions, respectively.

mean velocity and mean Reynolds shear stress almost per-
fectly, while DSM overpredicts the mean velocity and the mag-
nitude of mean Reynolds shear stress and the No model highly
mispredict them. By the total shear stress equation, the DRL
model produced mean SGS shear stress

〈
−τxy

〉
very well com-

pared to DSM. Here, we want to briefly mention the results of
classical supervised learning. The supervised learning model
with the same input information quite underpredicted the mag-
nitude of 〈u′v′〉 in the actual LES. In some cases, the actual
LES diverged in the model using more input information. This
indicates that even when fDNS data are available, there are
limitations in developing successful models through the clas-
sical supervised learning and that it is important for the devel-
opment of a successful model to reflect the reaction of the SGS
model through the online learning algorithm.

Also, the one-dimensional energy spectrum also supports
the results (figure 4). No model significantly overestimated
the overall distribution of the energy, while DSM and DRL
predict them reasonably. But, it is noticeable that DRL shows
better prediction than DSM at low wavenumbers with high en-
ergy, although at high wavenumbers some inaccuracies are ob-
served. Actually, (not shown here) LES with the trained DRL
model well represents the vortical structures, unlike the No
model.

We also present the statistics of SGS dissipation (εSGS =

Figure 5. (a) and (b) are the mean SGS dissipation and SGS
transport, respectively.

−τi jS̄i j/Reτ ) and SGS transport (TSGS = Re−1
τ ∂ (τi jūi)/∂x j)

in figure 5. We found that to accurately predict the streamwise
mean velocity and mean Reynolds shear stress, accurate repre-
sentation of mean SGS transport is required, but the accuracy
of mean SGS dissipation and backscatter are not essential re-
quirements. Accurate prediction of SGS energy transfer might
be relevant with the high order statistics or temporal behavior
of resolved variables.

Finally, we trained the DRL model in a new environment
with more coarse grid size (∆x+,∆z+) = (94.2,47.1). Even
though the optimal mean SGS shear stress is two times larger
than that of the previous case, DRL could find the optimal SGS
model well. Its test results in actual LES are given in figure 6.
At this condition, the prediction of DSM highly mismatches
with the target statistics, while our DRL model successfully
predicts the learning target. It indicates once again that our
DRL algorithm could discover a successful model in the actual
LES test.

CONCLUSIONS
It is clear that the DRL framework is a promising algo-

rithm for developing the SGS model of LES. And with the
increase of the available computational resources, the per-
formance of model will naturally increase. Although we
have shown successful applicability only in channel flow, this
framework could be extended to various turbulence modeling
problems in complex geometries. For the global goal of suc-
cessful predictions in various complex flows, construction of
diverse flow solvers and learning them simultaneously should
be carried out. In the near future, we hope to develop the tur-
bulence model that shows practical utility in real-world prob-
lems.

Although it was possible to find an optimal model through
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Figure 6. Test for (∆x+,∆z+) = (94.2,47.1). (a) and (b) are
the streamwise mean velocity and the mean Reynolds shear
stresss, respectively.

DRL, the understanding of the working principle of reinforce-
ment learning in relation to turbulence physics, understanding
of characteristics of the trained network, and guidance of hy-
perparameters is poor. In fact, it has been reported that the
physical properties inherent in data can be identified through
the characteristic analysis of the trained network (Kim & Lee,
2020; Lu et al., 2020), showing its importance. Clearly, we ex-
pect that the effort of fundamental understanding would help
improve the robustness and generalization of DRL.

Also, in a parallel point of view, a differentiable PDE
method (Sirignano et al., 2020; Kochkov et al., 2021) has
emerged as a promising algorithm. Although this method
should build a differentiable numerical solver and requires
huge cost and memory for each learning iteration, it has shown
the robust a posteriori test results compared to the classical
supervised learning. Therefore, a comparative research of on-

line learning algorithms, the DRL and the differentiable PDE
method, would be interesting as future work.
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