
12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

ULTIMATE HEAT TRANSFER IN TURBULENT THERMAL CONVECTION
BETWEEN POROUS WALLS

Fanyu Meng
Graduate School of Engineering Science

Osaka University
1-3 Machikaneyama, Toyonaka,

Osaka 560-8531, Japan
meng@tes.me.es.osaka-u.ac.jp

Shingo Motoki
Graduate School of Engineering Science

Osaka University
1-3 Machikaneyama, Toyonaka,

Osaka 560-8531, Japan
motoki@me.es.osaka-u.ac.jp

Genta Kawahara
Graduate School of Engineering Science

Osaka University
1-3 Machikaneyama, Toyonaka,

Osaka 560-8531, Japan
kawahara@me.es.osaka-u.ac.jp

ABSTRACT
A numerical study on the heat transfer and flow struc-

ture has been conducted for turbulent thermal convection be-
tween horizontal porous walls by using the immersed bound-
ary method. In this research, we perform direct numeri-
cal simulation with high-order compact schemes for turbu-
lent Rayleigh-Bérnard(RB) convection at the Rayleigh number
Ra = 4× 108–8× 108. The ultimate state represented by the
scaling Nu ∼ Ra1/2 for this RB convection between porous
walls could be well achieved at a high Rayleigh number Ra,
where the appearance of the large-scale structures within the
near-wall region hold the existence of the ultimate state. More-
over, a transient state without a power law of Nu with Ra with
an distinct exceeded ultimate scaling Nu ∼ Ra could also be
observed at the lower Ra. The distinct increased vertical veloc-
ity over the terminal velocity has been recognized as the trigger
of this novel scaling-like transitional process. The mechanism
of transition to the ultimate state has been well investigated
and discussed based on the energy dissipation rate and vortical
structures in this research.

Introduction
Rayleigh-Bénard (RB) convection is a canonical thermal

flow system induced by buoyancy in horizontal fluid layer
heated from below and cooled from above. The key parameters
of this flow system are the Rayleigh number and the Prandtl
number, defined as Ra= gα∆T H3/(νκ) and Pr = ν/κ , where
g, α , κ and ν represent the acceleration of gravity, expan-
sion coefficient, thermal diffusion coefficient and viscosity, re-
spectively. The Rayleigh number Ra expresses the strength of
buoyancy caused by gravity and temperature difference. The
Nusselt number Nu is defined to evaluate the intensity of a
heat flux in comparison to thermal conduction. A power law
Nu∼Raγ has been long discussed, in which different values of
γ demonstrate distinct states in this system. Malkus (1954) and
Priestley (1954) derived an Nu ∼ Ra1/3 law with a marginal

instability analysis and similarity argument, respectively. In
contrast, Kraichnan (1962) predicted an asymptotic ultimate
regime as Nu ∼ Pr1/2Ra1/2 with a logarithm correction stem-
ming from turbulent boundary layers. The most notable impli-
cation is that the heat transport will be independent of thermal
conductivity or thermal diffusivity in the ultimate state. Sev-
eral attempts had been done to achieve the ultimate scaling by
Calzavarini et al. (2005) , Pawar & Arakeri (2016) and Zhu
et al. (2019) numerically and experimentally.

According to previous studies, the effects induced by the
wall has been recognized to prevent heat transfer thereon from
exhibiting the ultimate scaling. With the aid of wall perme-
ability first introduced by Jiménez et al. (2001), Kawano et al.
(2021) showed that the ultimate scaling can be well realized
at high Rayleigh number in turbulent thermal convection be-
tween Darcy-type permeable walls on which the vertical ve-
locity is given by w = ±β p/ρ . On the porous walls of fixed
geometry, the dimensionless permeability parameter βU f (U f
being the buoyancy-induced terminal velocity) is considered to
increase as βU f ∼ Pr−1/2Ra1/2 with increasing Ra, and thus
in a real situation the prefactor c in the scaling law Nu = cRaγ

increases with increasing Ra, implying deviation from the
power law, i.e. the ultimate scaling of γ = 1/2. To achieve
the ultimate scaling and verify the deviation from the ultimate
scaling in a more realistic model for the RB convection, we
performed direct numerical simulations based on high-order
compact schemes and implemented the immersed boundary
method to mimic the interaction to let it be more realistic and
realizable.

Governing equations and flow configuration
A staggered finite-difference code Incompact3D devel-

oped by Laizet & Lamballais (2009) and Laizet & Li (2011)
based on high-order compact schemes has been applied to
ensure a quasi-spectral accuracy. The immersed boundary
method was used to make the detailed effects induced by the
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geometry structures in this flow system. The Boussinesq equa-
tions, which employs the Oberbeck-Boussinesq approximation
in the Navier-Stokes equation are our governing equations,

∂uuu
∂ t

+(uuu ·∇)uuu =− 1
ρ

∇p+ν∇
2uuu+gαT eeez + fff b (1)

∇ ·uuu = 0 (2)

∂T
∂ t

+(uuu ·∇)T = κ∇
2T +qb (3)

in which, uuu(xxx, t) = ueeex + veeey + weeez and T (xxx, t) denote the
velocity field and temperature field respectively. The veloc-
ity field and temperature field in this case follow the peri-
odic boundary conditions in the horizontal x- and y-directions
with the same length as Lx = Ly = H. The fff b and qb denote
the force field and heat source term on account of the imple-
mented immersed boundary method, respectively. We use the
buoyancy-induced terminal velocity, U f = (gα∆T H)1/2 as a
reference velocity scale. Pr and Ra are control parameters in
the system and the Pr is set to unity in this study. Moreover, the
aspect ratio i.e., the ratio of the horizontal extent to the height
is also a control parameter. The boundary conditions for com-
putational domain of liquid parts have been set as blow,

u(z = 0) = u(z = 3H) = w(z = 0) = w(z = 3H) = 0 (4)

T (z = 0) = T (z = 3H) = 0 (5)

and the boundary conditions for the solid parts are imposed as
no-slip and isothermal,

u = v = w = 0 (6)

T (z < H|solid) = ∆T (7)

T (z > 2H|solid) = 0 (8)

The intensity of the convection will be quantified in terms
of the heat flux resulting from the temperature difference be-
tween the top and bottom walls given by Nusselt number Nu,

Nu =
−κ

d⟨T ⟩xyt
dz + ⟨wT ⟩xyt

κ∆T/H
(9)

where < ·>xyt denotes the horizontal and time average on the
variables at the center of domain.

The geometry and flow configuration are shown in Figure
1. The porous wall possesses a 10×10 matrix of square holes.

Figure 1: The geometry of porous patterns and flow con-
figurations for simulations. The left slice shows the
holes in porous media viewed from above. The right one
shows all the flow system viewed from the side. The red
part, blue part and grey part denote the heating porous
wall, cooling porous wall and fluid domain, respectively.

The temperature of the heated lower (or cooled upper) porous
wall is kept at T = ∆T > 0 (or T = 0). The boundary con-
ditions of the surfaces on the porous media and the two base
plates at z = 0 and z = 3H overhead and underneath are no-slip
and isothermal. The width of square holes is set to 0.08H in all
simulations. There are plenum chambers of height 0.08H be-
tween the porous media and the base plates. The chamber is an
an important part in this simulation, which make the fluid get
in and get out from the porous walls be more realizable. More-
over, according to several previous studies, the permeable wall
without chamber can be considered as the roughness.

Scaling properties
The scaling relationship not only between the Ra and Nu

but also the statistical features of vertical velocity induced by
buoyancy term and temperature distributions will be studied
and considered. It can be easily observed from Figure 2, that
the ultimate scaling Nu ∼ Ra1/2 is achieved by the introduc-
tion of the porous walls with chambers at the high Rayleigh
number Ra > 108. The observed ultimate scaling in the case
of the porous walls is roughly consistent with that found by
Kawano et al. (2021). in the case of the permeable walls at
βU f = 3. At the lower Rayleigh number Ra < 108 in the case
of porous walls, a distinct scaling law which almost dominated
all the transition process can be observed, Nu ∼ Ra . This kind
of scaling law exceeded the ultimate scaling and enhanced the
Nu intensely, so it can be called as a scaling-like transition pro-
cess and this process is so novel when considered about several
studies. At the much lower Rayleigh number around Ra= 106,
Nu in the conventional non-porous case is almost comparable
with that in the porous case, implying that the wall porosity
does not have significant effects on thermal convection.

From Figure 3, the relationship between the Ra and Nu
on different positions can be observed. Most notable thing is
that, as Ra > 108 the ultimate state is reached in almost every
position of the domain. Likewise, the same scaling law Nu ∼
Ra is evident in every position of the domain when the global
state is in this scaling-like transition state.

The mean profile of temperature distribution has been
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Figure 2: Nusselt number Nu as a function of Rayleigh
number Ra. The blue line and red lines represent the
classical scaling Nu ∼ Ra1/3 and the ultimate scaling
Nu ∼ Ra1/2 respectively. The black dashed line denotes
the distinct scaling-like transition process with scaling
law Nu ∼ Ra. The blue circles represent the results
obtained from the non-porous RB convection and the
sky-blue squares denote the experimental data in a non-
porous cylindrical cell done by Chavanne et al. (2001).
The red circles represent the results obtained from the
RB convection between porous walls. The orange
squares represent the results obtained from Kawano
et al. (2021) for the RB between permeable walls at
βU f = 3
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Figure 3: Nusselt number Nu as a function of Rayleigh
number Ra for porous cases with different positions.
The red line represents the ultimate scaling Nu ∼ Ra1/2.

been checked in Figure 4a and Figure 4c for convectional cases
and porous cases respectively. It can be seen that in the near
wall region, the temperature becomes steeper and steeper in
convectional cases with increasing Ra. At higher Ra, ther-
mal boundary thickness becomes thinner. Meanwhile, for the
porous cases, in the holes on the porous surfaces we have
the turbulent heat flux in addition to the thermal conduction
heat flux, and thus the near-wall temperature gradient does not
change much.

The vertical root-mean-square velocities are shown in
Figure 4b and Figure 4d for different configurations, wrms in
conventional cases cannot scaled with the U f in the bulk re-
gion. In the porous cases, where a significant increase in the
vertical velocity fluctuation can be observed, with respect to
U f at Ra < 108 below the ultimate regime in which the ve-
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Figure 4: Mean temperature as a function of z/H for
(a) conventional cases and (c) porous cases. The root-
mean-square(RMS) vertical velocity normalized by U f
for (b) conventional cases and (d) porous cases. The
RMS vertical velocity is defined as wrms = ⟨w2⟩1/2

xyt , in
which ⟨·⟩xyt denotes the time and horizontal averaged.

locity fluctuation can scale with U f . Moreover, in the porous
media region(0 ≤ z ≤ H and 2H ≤ z ≤ 3H), an increase wrms
normalized by U f in the porous can also be observed, which
may play a key role for the transition process.
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Heat-flux structures, Energy dissipation and
Vortical structures

The mean thickness of the thermal boundary layer is given
by

δT =−∆T
(

d < T >xyt

dz

∣∣∣∣
z=0 or H

)−1
=

H
2Nu

, (10)

in which z = 0 and z = H imply the non-porous cases and
porous cases, respectively. The turbulent heat flux induced
by the buoyancy term can describe the strength and structures
of the convection. The turbulent heat flux normalized by U f
and ∆T could be obtained as wT/(U f ∆T ). It can be seen
from the Figure 5 that the small scale plume structures domi-
nate the near-wall region even at high Ra for the conventional
case. However, the structures of the turbulent heat flux ob-
tained from porous cases are so distinct and the large scale
structures dominate the near-wall region, which have been ob-
served in the ultimate state(Kawano et al., 2021)).

In order to figure out the mechanism for transient be-
haviour towards the 1/2 power law, the local energy dissipa-
tion rate

ϵ=
ν

2

(
∂ui

∂x j
+

∂u j

∂xi

)2
, (11)

is examined. In Figure 6,the horizontal and time averaged en-
ergy dissipation rate is shown as a function of z/H.

From Figure 6, we confirm that at the low Rayleigh num-
ber Ra = 106, although the weak large scale structures appear,
the state in the porous media is quiescent, as represented by
small energy dissipation therein. At higher Ra, the stronger
large scale structures appear to enhance thermal convection as
discussed before. In the transient state at Ra < 108, however,
the energy dissipation in the porous media is still low with
respect to U3

f /H, the normalized dissipation there increases
with increasing Ra. This less dissipation in the porous media
in spite of the appearance of large scale structures enhancing
thermal convection might lead to the excess of the velocity
fluctuation over the buoyancy-induced terminal velocity U f .
Figure 7 shows the dependence of the local dissipation on Ra
at the two positions of the porous media, z = 0.5H and 0.

We see from this figure that in contrast with the above-
mentioned behaviour of the local dissipation in the porous me-
dia in Figure 7a, just on the surface of the porous media in
Figure 7b, the dissipation decreases with Ra at lower Ra. It
is usual laminar behaviour of the normalized dissipation. At
higher Ra, the dissipation in Figure 7b also increases with in-
creasing Ra. This change of the behaviour would be attributed
to the appearance of dissipative vortical structures around the
porous surface. Around Ra = 108 we have enough energy dis-
sipation in the system, so that the velocity fluctuation does not
exceed U f but scale U f , leading to the ultimate scaling.

As the variation of the energy dissipation rate not only
near the wall but also in the holes, the vortical structures’ ap-
pearance, distribution and stretching can be considered as the
evidences for these three states, classical, transition and ul-
timate. As shown in Figure 8, when the exceeded ultimate
scaling Nu ∼ Ra occurs and continues, i.e. when the Ra is at
1× 107 and 7× 107, it can be seen that the energy dissipa-
tion occupies a certain distribution inside the porous medium,
while the vortical structure does not enter too much, i.e. it does
not provide enough dissipation for the whole system, resulting

(a)

(b)

Figure 5: Turbulent heat flux wT normalized by U f ∆T
at (a) z = 2δT (Lz = H) in the non-porous case at Ra =
5× 108 and (b) z−H = 5δT (Lz = 3H) in the porous
case at Ra = 1.8× 108, where δT denotes the thickness
of a thermal conduction layer.

in an actual dissipation rate higher than the Taylor’s dissipation
law, ϵ∼U3

f /H. When the Ra is at 1.8×108, it can be seen in
Figure 8c that the smoother vortical structures start to enter the
porous medium to provide sufficient energy dissipation for the
system, i.e. the energy dissipation rate of whole the system
will be scaled by Taylor’s dissipation rate as shown in Figure
6. As the Ra increases to 8×108, the appearance of the energy
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Figure 6: The horizontal and time averaged energy dissi-
pation rate normalized by U3

f /H in the lower half of the
domain in the porous case at several values of Ra.
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Figure 7: Local energy dissipation normalized with
U3

f /H as a function of the Rayleigh number at (a) z =
0.5H and (b) z = H.

dissipation and vortical structures in the same time and space
demonstrate that the vortical structures’ stretching becomes to
provide the most dissipation rate for the whole system, where
the vortical structures become to be dominated within the area
of the energy dissipation in the porous holes. This phenom is
also consistent as the result in Figure 7, i.e. the dissipation
of the whole system is in a saturated state, as the transition
process to ultimate state finished.

(a) (b)

(c) (d)

Figure 8: Instantaneous energy dissipation rate and vor-
tical structures for porous cases at (a) Ra = 1 × 107,
(b) Ra = 7 × 107, (c) Ra = 1.8 × 108 and (d) Ra =
8× 108. The red and yellow objects, respectively, rep-
resent the isosurfaces of the energy dissipation rate and
of the second invariant of the velocity gradient tensor,
(a) ϵ/(U2

f /H2) = 5 × 10, Q/(U2
f /H2) = 1.8 × 10, (b)

ϵ/(U2
f /H2) = 1.2× 103, Q/(U2

f /H2) = 1.5× 102, (c)
ϵ/(U2

f /H2) = 1.8× 103, Q/(U2
f /H2) = 2.5× 102 and

(d) ϵ/(U2
f /H2) = 4×103, Q/(U2

f /H2) = 5×102

Summary and outlook
It can clearly be observed from Figure 2, that the ul-

timate scaling Nu ∼ Ra1/2 is achieved by the introduction
of the porous walls with chambers at high Rayleigh number
Ra ≥ 108. The pre-factor in the observed ultimate scaling in
the case of the porous walls is roughly consistent with that
found by Kawano et al. (2021) in the case of the permeable
walls at βU f = 3. At the lower Rayleigh number Ra < 108 in
the case of the porous walls, a exceeded ultimate scaling law
Nu ∼ Ra has been well observed and confirmed, which is so
novel for this kind of research and can be recognized as the
distinct results induced by the porous structures. At the much
lower Rayleigh number around Ra = 106, Nu in the conven-
tional non-porous case is almost comparable with that in the
porous case, implying that the wall porosity does not have sig-
nificant effects on thermal convection.

The geometry of the plume structures near the walls also
shows differences between the porous cases and non-porous
cases in Figure 5. It can be seen that the small-scale plume
structures dominate the near-wall region even at high Ra for
the conventional case. However, the structures of the turbu-
lent heat flux found in the porous cases are so distinct, i.e, the
large-scale structures dominate the near-wall region, which are
essentially the same as those observed on the permeable walls
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in the ultimate state (Kawano et al., 2021). Meanwhile, the
vertical velocity normalized by U f not only in the bulk region
but also in the near-wall region is found to be invariant in the
permeable ultimate state (Kawano et al., 2021), and the same
is true of the porous case at high Rayleigh number Ra > 108.
At the Nu ∼ Ra Rayleigh number Ra = 107–108 in the porous
case, however, the vertical velocity fluctuation increases rela-
tively to U f .

When the porous parts are full-filled with the laminar
flow, βU f ∼ Ra1/2 can be achieved as the system in the state
of scaling-like transition and this kind of scaling law can lead
the deviant of the Nu based on the different pre-factor c(Ra) in
Nu ∼ c(Ra)Ra1/2. The variation of the pre-factor leads whole
the system to enter the Nu ∼ Ra scaling law. As the vortical
structures has been induced by the intensive turbulent struc-
tures from the bulk region, the vertical velocity in the porous
and on the inter-surface between the porous part and bulk re-
gion should be well considered due to the turbulent separated
vortical structures in the porous and on the near-wall region.
This kind of structures could lead the vertical structures with a
different scaling relationship as follows,

∆p
ρ

∼ w2 ∼U2
f . (12)

As the vortical structures enter the porous holes and try to full-
fill the holes, whole the system will saturate back to the ulti-
mate scaling from the scaling-like transition state as follows,

w ∼ β
∆p
ρ

(13)

β
−1 ∼ ∆p

ρ
w−1 ∼U f . (14)

Based on the relationship between the permeability β and U f ,
βU f ∼ Ra0 can be realized, which applies to the same config-
uration in (Kawano et al., 2021) and the scaling law saturates
back to the Nu ∼ Ra1/2 from the scaling-like transition state.

We have confirmed that at higher Ra the stronger large-
scale structures appear to enhance thermal convection as dis-
cussed before. In the scaling-like transition state at Ra = 107–
108, however, as shown in Figure 6 the energy dissipation in
the porous media is still smaller than U3

f /H, so that the nor-
malized dissipation therein increases with increasing Ra. This
less dissipation in the porous media leads to the excess of the
velocity fluctuation over the buoyancy-induced terminal veloc-
ity U f .

In this work, we have observed the ultimate state at high
Rayleigh number as well as the transition with a distinct scal-
ing law Nu ∼ Ra from the classical scaling to the ultimate
scaling at Ra = 107–108 in RB convection between porous

walls. We have also found that the large-scale structures be-
come dominant even in the near-wall region for the porous
cases, leading to the increase of the vertical velocity normal-
ized by U f . Moreover, the appearance of the large scale could
be recognized as a signal of the onset of the transition pro-
cess. The energy dissipation rate normalized by U3

f /H in-
creases with increasing Ra in the transition at low Ra, but it
is invariant at high Ra, implying the Taylor’s dissipation law,
ϵ ∼ U3

f /H. Furthermore, the relative increase in ϵ to U3
f /H

and thus the larger velocity fluctuation than U f to enhance the
energy dissipation are the mechanisms of the transitional be-
havior between the classical and the ultimate scaling. When
the system has enough energy dissipation in the sense of the
Taylor’s dissipation, thermal convection is saturated down to
the ultimate state.
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