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ABSTRACT
In this study, prediction and control of 2D decaying ho-

mogeneous isotropic turbulence (DHIT) using deep learning
have been performed as an example of a fundamental study to
improve understanding of the dynamic behavior of turbulence.
PredictionNet, a neural network used for prediction, showed
high accuracy in the prediction of flow up to one integral time
scale, 𝑇𝐿 , with a correlation coefficient of 0.855. Our model
based on generative adversarial network (GAN) also showed
much higher accuracy in the enstrophy spectrum than convolu-
tional neural network (CNN) model. Predicability depending
on the scale is also analyzed using scale decomposition. An-
other neural network used for control, ControlNet, was able to
generate disturbances that allow the time-evolution of the flow
field to be in a direction that fits the objective function. In ad-
dition, it was possible to bring some physical understanding of
the input vorticity fields through the analysis of the disturbance
fields.

INTRODUCTION
Recently, a lot of studies applying data-driven learning to

various applications in turbulence such as flow control (Yeh
et al., 2021), closure modeling (Maulik et al., 2018), and
flow reconstruction (Deng et al., 2019) are actively conducted.
However, there are not many examples yet of turbulence pre-
diction and control, especially for the time-varying turbulence,
due to complex characteristics such as high-dimensionality,
multi-scale, and nonlinearity. Thus, we tried to develop a pre-
diction model using GAN (Goodfellow et al., 2014) that pre-
dicts the evolution of turbulence with high accuracy by reflect-
ing not only spatial information but also statistical characteris-
tics of turbulence and to present a control model which enables
turbulence control for some specific purposes using this high-
accuracy prediction model as a surrogate model. Although it is
a prediction and control of a relatively simple 2D turbulence,
the results of the current study provide a new approach to pre-

diction and flow control that can be applied to practical appli-
cations and more complex turbulence.

MACHINE LEARNING METHODOLOGY
In this section, target, loss function, applied model and

network architecture of PredictionNet and ControlNet will be
explained.

PredictionNet
We applied two models of CNN and conditional GAN

(cGAN, Mirza & Osindero, 2014) for PredictionNet. CNN
was used as a baseline model because it is well known for
its capability of learning spatial information of variables em-
bedded in data. However, CNN has a problem of produc-
ing blurry output sometimes due to the objective function
which is simply minimizing the mean squared difference of
the ground truth and the prediction (Kim & Lee, 2020; Kim
et al., 2021). On the other hand, GAN returns a well-trained
generator (𝐺) containing statistical aspects of the data through
adversarial training to a discriminator (𝐷). In the basic GAN,
the parameters of 𝐺 and 𝐷 are updated in directions to min-
imize log(1− 𝐷 (𝐺 (𝒛))) and log(𝐷 (𝒙)), respectively, which
stands for the two-player min-max game with value function,
𝑉 (𝐺,𝐷):

min
𝐺

max
𝐷

𝑉 (𝐺,𝐷) = E𝒙∼𝑝 (𝒙) [log𝐷 (𝒙)]

+ E𝒛∼𝑝 (𝒛) [log(1−𝐷 (𝐺 (𝒛)))]
(1)

First, for the cGAN model used in this study, eq.(1) is modi-
fied using Earth-Mover (Wasserstein-1) distance (WGAN, Ar-
jovsky et al., 2017) to stabilize the training procedure. Then,
some extra information, 𝒚, the input of the generator in our
case, is given as a condition to the input of the discriminator to
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Figure 1. Schematic configurations of (a) PredictionNet and (b) ControlNet.

improve the output quality of the generator like the following:

min
𝐺

max
𝐷

𝑉 (𝐺,𝐷) = E𝒙∼𝑝 (𝒙) [𝐷 (𝒙 | 𝒚)]

− E𝒛∼𝑝 (𝒛) [𝐷 (𝐺 (𝒛 | 𝒚))] .
(2)

PredictionNet is a network that predicts the vorticity field
of a later time, Δ𝑡, from an input field (𝑃𝑟𝑒𝑑 (𝑋 (𝑡𝑖)) = 𝑋∗

𝑖
≈

𝑋 (𝑡𝑖 +Δ𝑡)). It is trained using direct numerical simulations
(DNS) data to play a functional role in predicting the later time
from each time point of our dataset. Therefore, the following
objective function is the optimization target regardless of the
applied model:

argmin
𝑤𝑝

∥𝑋∗
𝑖 − 𝑋 (𝑡𝑖 +Δ𝑡)∥2

2 (3)

where 𝑋 and 𝑋∗ represent the real (DNS) data and prediction
result, respectively, and 𝑤𝑝 means weight parameters of Pre-
dictionNet. Based on the objective function eq.(3), additional
terms such as regularization loss or adversarial loss are added
to form loss functions depending on the model applied. For
CNN, an L2 regularization loss is used to prevent overfitting
and increase stability as follows:

𝐿𝐶𝑁𝑁 =
1
𝑁

𝑁∑︁
𝑖=1

𝐿𝑖 +𝜎𝑅(𝑤𝑝)

𝐿𝑖 =

〈
(𝜔∗

𝑖 −𝜔𝑡𝑖+Δ𝑡 )
2
〉

𝑅(𝑤𝑝) =
1
2

∑︁
𝑘

𝑤2
𝑝,𝑘

(4)

where 𝑁 and 𝜎 are the batch size and the strength of reg-
ularization, each of which is set to 32 and 0.0001 by fine-
tuning. The loss function of cGAN was set by adding a gradi-
ent penalty (GP) loss term (WGAN-GP, Gulrajani et al., 2017)

based on eq.(2) as follows:

𝐿𝑐𝐺𝐴𝑁 = 𝛾
1
𝑁

𝑁∑︁
𝑖=1

𝐿𝑖 − 𝐿𝑎𝑑𝑣

𝐿𝑖 =

〈
(𝜔∗

𝑖 −𝜔𝑡𝑖+Δ𝑡 )
2
〉

𝐿𝑎𝑑𝑣 = 𝐿 𝑓 𝑎𝑙𝑠𝑒 (5)

𝐿𝐷 = −𝐿𝑡𝑟𝑢𝑒 + 𝐿 𝑓 𝑎𝑙𝑠𝑒 +𝛼𝐿𝑔𝑝 + 𝛽𝐿𝑑𝑟𝑖 𝑓 𝑡

𝐿𝑡𝑟𝑢𝑒 =
1
𝑁

𝑁∑︁
𝑖=1

𝐷 (𝜔𝑡𝑖+Δ𝑡 ,𝜔𝑡𝑖 ) 𝐿 𝑓 𝑎𝑙𝑠𝑒 =
1
𝑁

𝑁∑︁
𝑖=1

𝐷 (𝜔∗
𝑖 ,𝜔𝑡𝑖 )

(6)

where 𝛼, 𝛽, and 𝛾 determine the portion of each loss term in
the total loss, and fixed to 100, 10, and 0.001. The schematic
configuration of PredictionNet can be found from figure 1(a).
One thing to note that is if there’s no discriminator then it is
the configuration of the baseline CNN model.

ControlNet
For ControlNet, the same generative CNN as baseline

CNN or cGAN generator of PredictionNet was used. Control-
Net is trained to generate disturbance fields that fit the objec-
tive function combined with PredictionNet (𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (𝑋 (𝑡𝑖)) =
Δ𝑋𝑖 , 𝑃𝑟𝑒𝑑 (𝑋 (𝑡𝑖) + Δ𝑋𝑖) = �̃�𝑖). Examples of the objective
function used in this study include maximizing the change of
vorticity at a later time (propagation of control effect) and min-
imizing the enstrophy at a later time as follows:

argmax
𝑤𝑐

∥𝑋∗
𝑖 − �̃�𝑖 ∥2

2 (7)

argmin
𝑤𝑐

∥ �̃�𝑖 ∥2
2 (8)

where �̃� and 𝑤𝑐 are disturbed prediction at time 𝑡 +Δ𝑡 and
weight parameters of ControlNet, respectively. A spatial gra-
dient loss term is additionally used to remove non-physical
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Figure 2. The decaying level of vorticity RMS and dissipa-
tion rate within the dataset time interval, 100𝛿𝑡.

noise for the ControlNet loss function as follows:

𝐿𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =
1
𝑁

𝑁∑︁
𝑖=1

𝐿𝑖 + 𝜃𝐿𝑔𝑟𝑎𝑑

𝐿𝑔𝑟𝑎𝑑 =
1
𝑁

𝑁∑︁
𝑖=1


〈©«

𝜔
𝑝+1,𝑞
𝑡𝑡

−𝜔
𝑝,𝑞
𝑡𝑖

𝑑𝑥

ª®¬
2〉

+
〈©«

𝜔
𝑝,𝑞+1
𝑡𝑖

−𝜔
𝑝,𝑞
𝑡𝑖

𝑑𝑦

ª®¬
2〉

(9)

The schematic configuration of ControlNet can be found from
figure 1(b).

DATA COLLECTION
Because the flow is 2-dimensional, DNS were performed

on the incompressible Navier-Stokes equations in the form of
the vorticity transport equation and the stream function formu-
lation to basically satisfy the continuity equation, as follows:

𝜕𝜔

𝜕𝑡
= −𝑢 𝑗

𝜕𝜔

𝜕𝑥 𝑗
+ 𝜈 𝜕2𝜔

𝜕𝑥 𝑗𝜕𝑥 𝑗
&

𝜕2𝜓

𝜕𝑥 𝑗𝜕𝑥 𝑗
= −𝜔 (10)

where 𝜔, 𝜓, and 𝜈 are vorticity, stream function, and kinematic
viscosity, respectively. They are solved by the pseudo-spectral
method with 3/2 zero-padding for de-aliasing. The simulation
time step, 𝑑𝑡, is 0.0025, and the Crank-Nicolson method for
the viscous term and the 2nd order Adams-Bashforth method
for the convective term are used for the time integration. Com-
putational domain size is 2𝜋×2𝜋, the number of spatial grids
is 128×128, and the bi-periodic boundary condition is applied
spatially. 500, 100, and 50 independent simulations with ran-
dom phase and fixed amplitude initialization are performed for
training, validation and test, respectively. The time interval of
the dataset was determined after statistically sufficiently devel-
oped (after satisfying the power-law spectrum), and the data
time step, 𝛿𝑡, equals 20 simulation time steps (𝛿𝑡 = 20𝑑𝑡). Al-
though we are reflecting the decaying nature of the flow in
our models, it is undesirable if those flow fields almost con-
verged to the steady solution were contained in the dataset. So,
only 100𝛿𝑡 interval showing a relatively high rate of change in
statistics is chosen. Among the representative statistics, the
root mean square (RMS) of vorticity decreased by about 25%
and dissipation rate (𝜖) decreased by about 44% in this interval
(see figure 2).

Table 1. Quntified predictive accuracy of CNN and cGAN by
test MSE & C.C. depending on the prediction time distance.

Test MSE C.C.

Δ𝑡 CNN cGAN CNN cGAN

0.25𝑇𝐿 0.0144 0.0086 0.9898 0.9940

0.5𝑇𝐿 0.0404 0.0390 0.9699 0.9708

𝑇𝐿 0.1298 0.1724 0.8870 0.8547

2𝑇𝐿 0.3863 0.5056 0.5227 0.4530

Figure 3. Examples of PredictionNet result using one of test
simulations. (a) Input field. And results of prediction time
distances of (b) Δ𝑡 = 0.25𝑇𝐿 , (c) Δ𝑡 = 0.5𝑇𝐿 , (d) Δ𝑡 = 𝑇𝐿 , and
(e) Δ𝑡 = 2𝑇𝐿 .

RESULTS
PredictionNet

The prediction results of PredictionNet were compared
according to the prediction time distance, Δ𝑡. It is set to 0.25,
0.5, 1, and 2 times the integral time scale, 𝑇𝐿 . It corresponds
to around 40𝛿𝑡 or 800𝑑𝑡 where the autocorrelation drops to
around 0.25. As a result, it was confirmed that both CNN and
cGAN show high accuracy in both qualitative and quantitative
measures up to one 𝑇𝐿 (see Table 1, figure 3). However, as
shown in enstrophy spectra of figure 4, it was found that CNN
failed to predict the high-wavenumber region even from a very
close Δ𝑡. On the other hand, in the case of cGAN, high-order
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Figure 4. Comparison of enstrophy spectra for the input time
point of 𝑡0. (a) Δ𝑡 = 0.25𝑇𝐿 , (b) Δ𝑡 = 0.5𝑇𝐿 , (c) Δ𝑡 = 𝑇𝐿 , and
(d) Δ𝑡 = 2𝑇𝐿 .

statistics are predicted well only with a small amount of error
even at 𝑇𝐿 .

It is conjectured that cGAN reflects the statistical char-
acteristics of the target flow field well while the generator
is trained adversarially to the discriminator and contains the
spatial correlation between the input and the target by con-
ditioning the discriminator to take the input field of the gen-
erator together with its own inputs (i.e., the prediction target
and the generated flow field). In other words, cGAN seems
to contain small-scale characteristics better by learning the
non-linear features of the flow field based on complex dynam-
ics compared to CNN that simply minimizes MSE based on
point-wise values. This can be verified using scale decom-
position as shown in figure 5. While CNN fails to generate
small-scale details and underpredicts even intermediate-scale
features, cGAN shows very high accuracy for both large-scale
and intermediate-scale. Small-scale details are also generated
well, although the structures are slightly shifted and distorted.

ControlNet
The first target of ControlNet is to maximize the propa-

gation of the control effect at a later time, as in eq.(7). Here,
we set the target time distance as 0.5𝑇𝐿 , and the only con-
straint applied to ControlNet is the RMS of the disturbance
field (Δ𝑋𝑟𝑚𝑠 = 0.05𝑋𝑟𝑚𝑠). Looking at the disturbance field
and enstrophy spectra in figures 6(c) and 6(e), a disturbance
with large-scale structures in which most of the energy is
concentrated in the low-wavenumber region is generated. In
addition, this energy-concentrated disturbance structures are
mostly acting on the vortex structures of the input field. Thus,
we can think of it as the control effect of ControlNet output
is propagated and amplified well to the later time by trans-
posing the dynamic path of the flow evolution. As a result, it
is shown that the vortex structures of original prediction and
disturbance added prediction have slightly different positions
and directions (see figures 6(b) and 6(d)). To see whether our
disturbance is the optimum case for maximizing the change
of vorticity field under the given condition, we performed two
separate validation cases. The first one is shown in figure 7(a),
showing the results of quantifying the degree of change at the

Figure 5. Results of scale decomposition for Δ𝑡 = 𝑇𝐿 . (a)
Original fields, (b) large-scales (𝑘 ≤ 4), (c) intermediate-scales
(5 ≤ 𝑘 ≤ 20), and (d) small-scales (𝑘 ≥ 21).

Figure 6. Examples of ControlNet with the target
argmax𝑤𝑐

∥𝑋∗
𝑖
− �̃�𝑖 ∥2

2. (a) Input field, (b) original pre-
diction, (c) disturbance field, (d) disturbance added prediction,
and (e) enstrophy spectra.

later time from the original prediction by MSE. The Control-
Net output, red dotted line, is the largest control effect com-
pared to the subsequent 1000 nodes, MSE using other distur-
bance fields modified by random phase shift or spatial shift.
The second one is shown in figure 7(b). It presents normalized
RMS difference of simulations by adding various disturbance
fields to the input, including disturbances suggested by previ-
ous researches, from the original simulation. Obviously, the
best case was our ControlNet output (red line).

The second target is to minimize the enstrophy at a later
time, as in eq.(8). Looking at the disturbance field and enstro-
phy spectra in figures 8(c) and 8(e), we can see that disturbance
with an almost similar structure to the main vortex structures
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Figure 7. (a) Quantifed results about the degree of the prop-
agation of the control effect by MSE, and (b) normalized RMS
difference of various simulations from the original simulation.

Figure 8. Examples of ControlNet with the target
argmin𝑤𝑐

∥ �̃�𝑖 ∥2
2. (a) Input field, (b) original prediction,

(c) disturbance field, (d) disturbance added prediction, and (e)
enstrophy spectra.

of the input field but in opposite sign is generated. The spec-
trum also showed a very similar result to the input. Checking
the disturbed prediction fields, there was only minor change in
the behavior and evolution of the flow field, and only the rate
of decay and min/max values are affected to minimize enstro-
phy at the later time.

CONCLUSION
In this study, prediction and control of 2D decaying tur-

bulence were performed as a fundamental example of predic-
tion and control of turbulence. In the prediction part, models
that can predict with high accuracy up to a time where the tur-

bulence is temporally decorrelated were developed. Among
them, the cGAN model was able to predict even small-scale
features well by reflecting the complex nonlinear dynamics
and interactions of turbulence, and scale decomposition that
can more precisely analyze the accuracy of turbulence predic-
tion is presented. In the control part, we developed a model
that can produce a control effect suitable for the desired target.
Although this study is a fundamental example of a relatively
simple flow field, it has the potential to be applied to practical
applications or more complex turbulence.

ACKNOWLEDGMENTS
This work was supported by National Research Founda-

tion of Korea (NRF) grants funded by the Korean government
(MSIP) (2017R1E1A1A03070282, 2022R1A2C2005538).

REFERENCES
Arjovsky, M., Chintala, S. & Bottou, L. 2017 Wasserstein gen-

erative adversarial networks. In 34th ICML (ed. Doina Pre-
cup & Yee Whye Teh), Proceedings of Machine Learning
Research, vol. 70, pp. 214–223. PMLR.

Deng, Z., He, C., Liu, Y. & Kim, K. C. 2019 Super-resolution
reconstruction of turbulent velocity fields using a generative
adversarial network-based artificial intelligence framework.
Phys. Fluids 31 (12), 125111.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A. & Bengio, Y. 2014 Gen-
erative adversarial nets. In Adv. Neural Inf. Process. Syst.
(ed. Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence &
K. Q. Weinberger), , vol. 27. Curran Associates, Inc.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. &
Courville, A. 2017 Improved training of wasserstein gans.
Preprint .

Kim, H., Kim, J., Won, S. & Lee, C. 2021 Unsupervised deep
learning for super-resolution reconstruction of turbulence.
J. Fluid Mech. 910, A29.

Kim, J. & Lee, C. 2020 Deep unsupervised learning of turbu-
lence for inflow generation at various reynolds numbers. J.
Comput. Phys. 406, 109216.

Maulik, R., San, O., Rasheed, A. & Vedula, P. 2018 Subgrid
modelling for two-dimensional turbulence using neural net-
works. J. Fluid Mech. 858, 122–144.

Mirza, M. & Osindero, S. 2014 Conditional generative adver-
sarial nets. arXiv preprint .

Yeh, C.A., Meena, M. G. & Taira, K. 2021 Network broadcast
analysis and control of turbulent flows. J. Fluid Mech. 910,
A15.

5


